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The industrial robotics sector is one of the most quickly growing industrial divisions, providing standardised

technologies suitable for various automation processes. In most applications, industrial robots form bigger units as

robotic cells or automated/autonomous manufacturing lines.

industrial robots  collaborative robots  human-robot interaction  robotic prospectives

1. Human–Machine Interaction

To date, manual human work has been often replaced by robotic systems in industry. However, within complex

systems, the interaction between humans and machines/robots (HMI) still needs to occur. HMI is an area of

research related to the development of robotic systems based on understanding, evaluation, and analysis, and this

system combines various forms of cooperation or interaction with humans. Interaction requires communication

between robots and humans, and human communication and collaboration with the robot system can take many

forms. However, these forms are greatly influenced by whether the human is close to the robot and the context

being used: (i) human–computer context—keyboard, buttons, etc.; (ii) real procedures context—haptics, sensors;

and (iii) close and exact interaction. Therefore, both human and robot communication or interaction can be divided

into two main categories: remote interaction and exact interaction. Remote interaction takes place by remote

operation or supervised control. Close interaction takes place by operation with an assistant or companion. Close

interaction may include physical interaction. Because close interactions are the most difficult, it is crucial to

consider a number of aspects to ensure a successful collaboration, i.e., a real-time algorithm, “touch” detection and

analysis, autonomy, semantic understanding capabilities, and AI-aided anticipation skills. A summary of the

relevant research focused on improving and developing HMI methods is provided in Table 1.

Table 1. Research focused on human–machine interaction.

Objective Technology Approach Improvement Ref.

To improve flexibility,
productivity and

quality of a multi-
pass gas tungsten

arc welding (GTAW)
process performed
by a collaborative

robot.

A haptic
interface.

6-axis robotic
arm (Mitsubishi

MELFA RV-
13FM-D).

The end effector
with GTAW

torch.

A haptic-based
approach is

designed and tested
in a manufacturing
scenario proposing
light and low-cost

real-time algorithms
for “touch”
detection.

Two main criteria were analysed to
assess the performance: the 3-Sigma

rule and the Hampel identifier.
Experimental results showed better
performance of the 3-Sigma rule in

terms of precision percentage (mean
value of 99.9%) and miss rate (mean
value of 10%) concerning the Hampel

identifier. Results confirmed the
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Objective Technology Approach Improvement Ref.
A monitoring
camera (Xiris
XVC-1000).

A Load Cell (ATI
Industrial

Automation
Mini45-E) to
evaluate tool

force interactions
with work pieces.

influence of the contamination level
related to the dataset. This algorithm
adds significant advances to enable
the use of light and simple machine

learning approaches in real-time
applications.

To produce more
advanced or

complex forms of
interaction by

enabling cobots with
semantic

understanding
capabilities or AI-
aided anticipation

skills.

Collaborative
robots

Artificial intelligence.

The overview provides hints of future
cobot developments and identifies
future research frontiers related to

economic, social, and technological
dimensions.

To strike a balance
in order to find a
suitable level of

autonomy for human
operators.

Model of
Remotely
Instructed

Robots (RIRs.)

Modelling method.

Developed model in which the robot
is autonomous in task execution, but

also aids the operator’s ultimate
decision-making process about what
to do next. Presentation of the robot’s
own model of the work scene enables
corrections to be made by the robot,

as well as it can enhance the
operator’s confidence in the robot’s

work.

The interaction between humans and robots or mechatronic systems encompasses many interdisciplinary fields,

including physical sciences, social sciences, psychology, artificial intelligence, computer science, robotics, and

engineering. This interaction examines all possible situations in which a human and a robot can systematically

collaborate or complement each other. Thus, the main goal is to provide robots with various competencies to

facilitate their interaction with humans. To implement such competencies, modelling of real-life situations and

predictions is necessary, applying models in interaction with robots, and trying to make this interaction as efficient

as possible, i.e., inherently intuitive, based on human experience and artificial intelligence algorithms.

The role of various interfering aspects (Table 2.) in human–robot interaction may lead to different future

perspectives.

Table 2. Interfering aspects in human–robot interaction.
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Objective Interaction Approach Solution Ref.

Frustration
Close cooperative

work
Controlled

coordination
Sense of control of frustration, affective

computing.

Emotion
recognition

By collecting
different kinds of

data.

Discrete models
describing

emotions used,
facial expression
analysis, camera

positioning.

Affective computing.
Empowering robots to observe, interpret

and express emotions. Endow robots
with emotional intelligence.

Decoding of
action

observation

Elucidating the
neural mechanisms

of action
observation and

intention
understanding.

Decoding the
underlying neural

processes.

The dynamic involvement of the mirror
neuron systems (MNS) and the theory of

mind ToM/mentalising network during
action observation.

Verbal and non-
verbal

communication

Interactive
communication.

Symbol
grounding

Composition of grounded semantics,
online negotiation of meaning, affective

interaction and closed-loop affective
dialogue, mixed speech-motor planning,

massive acquisition of data-driven
models for human–robot communication

through crowd-sourced online games,
real-time exploitation of online

information and services for enhanced
human–robot communication.

The main aspirations are an intuitive, human-friendly interface, faster and simpler programming methods,

advanced communication features, and robot reactions to human movements, mood, and even psychological

state. Methods to monitor human actions and emotions , fusion of sensors’ data, and machine learning are key

technologies for further improvement in the HMI area.

2. Object Recognition

Object recognition is a typical issue in industrial robotics applications, such as sorting, packaging, grouping, pick

and place, and assembling (Table 3). The appropriate recognition method and equipment selection mainly

depends on the given task, object type, and the number of recognisable parameters. If there are a small number of

parameters, simpler sensing technologies based on typical approaches (geometry measuring, weighing, material

properties’ evaluation) can be implemented. Alternatively, if there are a significant number of recognisable

parameters, photo or video analysis is preferred. Required information in two- or three-dimensional form from

image or video can be extracted using computer vision techniques such as object localisation and recognition.

Various techniques of vision-based object recognition have been developed, such as appearance-, model-,

[6]
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template-, and region-based approaches. Most vision recognition methods are based on deep learning  and

other machine learning methods.

In a previous study , a lightweight Franka Emika Panda, cobot with seven degrees of freedom and a Realsense

D435 RGB-D camera, mounted on an end effector, was used to extend the default robots’ function. Instead of

using a large dataset-based machine learning technique, the authors proposed a method to program the robot from

a single demonstration. This robotic system can detect various objects, regardless of their position and orientation,

achieving an average success rate of more than 90% in less than 5 min of training time, using an Ubuntu 16.04

server running on an Intel(R) Core(TM) i5-2400 CPU (3.10 GHz) and an NVIDIA Titan X GPU.

Another approach for grasping randomly placed objects was presented in . The authors proposed a set of

performance metrics and compared four robotic systems for bin picking, and took first place in the Amazon

Robotics Challenge 2017. The survey results show that the most promising solutions for such a task are RGB-D

sensors and CNN-based algorithms for object recognition, and a combination of suction-based and typical two-

finger grippers for grasping different objects (vacuum grippers for a stiff object with large and smooth surface

areas, and two-finger grippers for air-permanent items).

Similar localisation and sorting tasks appear in the food and automotive industries, and in almost every production

unit. In , an experimental method was proposed using a pneumatic robot arm for separation of objects from a

set according to their colour. If the colour of the workpiece is recognisable, it is selected with the help of a robotic

arm. If the workpiece colour does not meet the requirements, it is rejected. The described sorting system works

according to an image processing algorithm in MATLAB software. More advanced object recognition methods

based on simultaneous colour and height detection are presented in . A robotic arm with six degrees of freedom

(DoF) and a camera with computer vision software ensure a sorting efficiency of about 99%.

A Five DoF robot arm, “OWI Robotic Arm Edge”, proposed by Pengchang Chen et al., was used to validate the

practicality and feasibility of a faster region-based convolutional neural network (faster R-CNN) model using a

dataset containing images of symmetric objects . Objects were divided into classes based on colour, and

defective and non-defective objects.

Despite significant progress in existing technologies, randomly placed unpredictable objects remain a challenge in

robotics. The success of a sorting task often depends on the accuracy with which recognisable parameters can be

defined. Yan Yu et al.  proposed an RGB-D-based method for solid waste object detection. The waste sorting

system consists of a server, vision sensors, industrial robots, and rotational speedometer. Experiments performed

on solid waste image analysis resulted in a mean average precision value of 49.1%.

Furthermore, Wen Xiao et al. designed an automatic sorting robot that uses height maps and near-infrared (NIR)

hyperspectral images to locate the region of interest (ROI) of objects, and to perform online statistic pixel-based

classification in contours . This automatic sorting robot can automatically sort construction and demolition waste

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]



Industrial Robotics | Encyclopedia.pub

https://encyclopedia.pub/entry/18134 5/18

ranging in size from 0.05 to 0.5 m. The online recognition accuracy of the developed sorting system reaches

almost 100% and ensures operation speed up to 2028 picks/h.

Another challenging issue in object recognition and manipulation is objects having an undefined shaped and

contaminated by dust or smaller particles, such as minerals or coal. Quite often, such a task requires not only

recognising the object but also determining the position of the centre of mass of the object. Man Li et al. 

proposed an image processing-based coal and gangue sorting method. Particle analysis of coal and gangue

samples is performed using morphological corrosion and expansion methods to obtain a complete, clean target

sample. The object’s mass centre is obtained using the centre of the mass method, consisting of particle removal

and filling, image binarization, and separation of overlapping samples, reconstruction, and particle analysis. The

presented method achieved identification accuracy of coal and gangue samples of 88.3% and 90.0%, and the

average object mass centre coordinate errors in the x and y directions were 2.73% and 2.72%, respectively .

Intelligent autonomous robots for picking different kinds of objects were studied as a possible means to overcome

the current limitations of existing robotic solutions for picking objects in cluttered environments . This

autonomous robot, which can also be used for commercial purposes, has an integrated two-finger gripper and a

soft robot end effector to grab objects of various shapes. A special algorithm solves 3D perception problems

caused by messy environments and selects the right grabbing point. When using lines, the time required depends

significantly on the configuration of the objects, and ranges from 0.02 s when the objects have almost the same

depth, to 0.06 s in the worst case when the depth of the tactile objects is greater than the lowest depth but not

perceived .

In robotics, the task of object recognition often includes not only recognition and the determinaton of coordinates,

but it also plays an essential role in the creation of a robot control program. Based on the ABB IRB 140 robot and a

digital camera, a low-cost shapes identification system was developed and implemented, which is particularly

important due to the high variability of welded products . The authors developed an algorithm that recognises

the required toolpath from a taken image. The algorithm defines a path as a complex polynomial. It later

approximates it by simpler shapes with a lower number of coordinates (line, arc, spline) to realise the tool

movement using standard robot programming language features.

Moreover, object recognition can be used for robot machine learning to analyse humans’ behaviour. Such an

approach was presented by Hiroaki et al. , where the authors studied the behaviour of a human crowd, and

formulated a new forecasting task, called crowd density forecasting, using a fixed surveillance camera. The main

goal of this experiment was to predict how the density of the crowd would change in unseen future frames. To

address this issue, patch-based density forecasting networks (PDFNs) were developed. PDFNs project a variety of

complex dynamics of crowd density throughout the scene, based on a set of spatially or spatially overlapping

patches, thus adapting the receptive fields of fully convolutional networks. Such a solution could be used to train

robotic swarms because they behave similarly to humans in crowded areas.

Table 3. Research focused on object recognition in robotics.
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Objective Technology Approach Improvement Ref.

Extended default
“program from

demonstration” feature of
collaborative robots to

adapt them to
environments with
moving objects.

Franka Emika
Panda cobot with

7 degrees of
freedom, with a

Realsense D435
RGB-D camera
mounted on the

end-effector.

Grasping method
to fine-tune using

reinforcement
learning

techniques.

The system can grasp various
objects from a demonstration,
regardless of their position and
orientation, in less than 5 min of

training time.

Introduction of a set of
metrics for primary

comparison of robotic
systems’ detailed
functionality and

performance.

Robot with
different grippers.

Recognition
method and the

grasping method.

Developed original robot
performance metrics and tested
on four robot systems used in

the Amazon Robotics
Challenge competition. Results

of analysis showed the
difference between the systems

and promising solutions for
further improvements.

To build a low-cost
system for identifying
shapes to program

industrial robots for the
2D welding process.

Robot ABB IRB
140 with a digital
camera, which

detects contours
on a 2D surface.

A binarisation and
contour

recognition
method.

A low-cost system based on an
industrial vision was developed
and implemented for the simple
programming of the movement

path.

The patch-based density
forecasting networks

(PDFNs) directly forecast
crowd density maps of

future frames instead of
trajectories of each

moving person in the
crowd.

Fixed surveillance
camera

Density
Forecasting in
Image Space.

Density
Forecasting in
Latent Space.

PDFNs.
Spatio-Temporal

Patch-Based
Gaussian filter.

Proposed patch-based models,
PDFN-S and PDFN-ST,

outperformed baselines on all
the datasets. PDFN-ST
successfully forecasted

dynamics of individuals, a small
group, and a crowd. The
approach cannot always

forecast sudden changes in
walking directions, especially
when they happened in the

later frames.

To separate the objects
from a set according to

their colour.

Pneumatic Robot
arm

Force in
response to

applied pressure.

The proposed robotic arm may
be considered for sorting. Servo
motors and image processing

cameras can be used to
achieve higher repeatability and

accuracy.

An image processing-
based method for coal
and gangue sorting.
Development of a
positioning and

identification system.

Coal and gangue
sorting robot

Threshold
segmentation

methods.
Clustering method.

Morphological
corrosion and

Efficiency is evaluated using
the images of coal and gangue,
which are randomly picked from

the production environment.
The average coordinate errors

in the x and y directions are
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Objective Technology Approach Improvement Ref.
expansion

methods. The
centre of mass

method.

2.73% and 2.72%, and the
identification accuracy of coal
and gangue samples is 88.3%
and 90.0%, respectively, and

the sum of the time for
identification, positioning, and

opening the camera for a single
sample averaged 0.130 s.

A computer vision-based
robotic sorter is capable

of simultaneously
detecting and sorting

objects by their colours
and heights. Vision-

based process
encompasses
identification,

manipulation, selection,
and sorting objects

depending on colour and
geometry.

A 5 or 6 DOF
robotic arm and a
camera with the
computer vision

software detecting
various colours
and heights and

geometries.

Computer Vision
methods with the

Haar Cascade
algorithm. The
Canny edge

detection
algorithm is used

for shape
identification.

A robotic arm is used for picking
and placing objects based on

colour and height. In the
proposed system, colour and

height sorting efficiency is
around 99%. Effectiveness,

high accuracy and low cost of
computer vision with a robotic

arm in the sorting process
according to color and shape

are revealed.

A novel multimodal
convolutional neural
network for RGB-D

object detection.

A base solid waste
sorting system
consisting of a
server, vision

sensors, industrial
robot, and
rotational

speedometer.

Comparison with
single modal

methods.
Washington RGB-

D object
recognition
benchmark
evaluated.

Meeting the real-time
requirements and ensuring high

precision. Achieved 49.1%
mean average precision,

processing images in real-time
at 35.3 FPS on one single

Nvidia GTX1080 GPU.
Novel dataset.

Practicality and feasibility
of a faster R-CNN model

using a dataset
containing images of
symmetric objects.

Five DoF robot
arm “OWI Robotic

Arm Edge.”

CNN learning
algorithm that

processes images
with multiple

layers (filters) and
classifies objects

in images.
Regional Proposal

Network (RPN)

The accuracy and precision
rate are steadily enhanced. The

accuracy rate of detecting
defective and non-defective

objects is successfully
improved, increasing the

training dataset to up to 400
images of defective and non-

defective objects.

An automatic sorting
robot with height maps
and near-infrared (NIR)
hyperspectral images to
locate objects’ ROI and
conduct online statistic

pixel-based classification
in contours.

24/7 monitoring.

The robotic
system with four
modules: (1) the

main conveyor, (2)
a detection

module, (3) a light
source module,

and (4) a
manipulator.

Method for an
automatic sorting

robot.
Identification

include pixel, sub-
pixel, object-based

methods.

The prototype machine can
automatically sort construction

and demolition waste with a
size range of 0.05–0.5 m. The

sorting efficiency can reach
2028 picks/h, and the online
recognition accuracy nearly

reaches 100%.
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Objective Technology Approach Improvement Ref.
Mask-RCNN and

YOLOv3
algorithms.

Can be applied in technology
for land monitoring.

Overcoming current
limitations on the existing

robotic solutions for
picking objects in

cluttered environments.

Intelligent
autonomous

robots for picking
different kinds of

objects.
Universal jamming

gripper.

A comparative
study of the
algorithmic

performance of the
proposed method.

When a corner is detected, it
takes just 0.003 s to output the

target point. With lines, the
required time depends on the
object’s configuration, ranging

from 0.02 s, when objects have
almost the same depth, to 0.06
s in the worst-case scenario.

A few main trends can be highlighted from the research analysis related to object recognition in robotics. These

can be defined as object recognition for localisation and further manipulation; object recognition for shape

evaluation and automatic generation of the robot program code for the corresponding robot movement; and object

recognition for behaviour analysis to use as initial data for machine learning algorithms. A large number of reliable

solutions have been tested in the industrial environment for the first trend, in contrast to the second and third

cases, which are currently being developed.

3. Medical Application

The da Vinci Surgical System is the best-known robotic manipulator used in surgery applications. Florian Richter et

al.  presented a Patient Side Manipulator (PSM) arm technology to implement reinforcement learning algorithms

for the surgical da Vinci robots. The authors presented the first open-source reinforcement learning environment for

surgical robots, called dVRL . This environment allows fast training of da Vinci robots for autonomous

assistance, and collaborative or repetitive tasks, during surgery. During the experiments, the dVRL control policy

was effectively learned, and it was found that it could be transferred to a realrobot- with minimal efforts. Although

the proposed environment resulted in the simple and primitive actions of reaching and picking, it was useful for

suction and debris removal in a real surgical setting.

Meanwhile, in their work, Yohannes Kassahun et al. reviewed the role of machine learning techniques in surgery,

focusing on surgical robotics . They found that currently, the research community faces many challenges in

applying machine learning in surgery and robotic surgery. The main issues are a lack of high-quality medical and

surgical data, a lack of reliable metrics that adequately reflect learning characteristics, and a lack of a structured

approach to the effective transfer of surgical skills for automated execution . Nevertheless, the application of

deep learning in robotics is a very widely studied field. The article by Harry A. Pierson et al. in 2017 provides a

recent review emphasising the benefits and challenges vis-à-vis robotics . Similarly to , they found that the

main limitations preventing deep learning in medical robotics are the huge volume of training data required and a

relatively long training time.
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Surgery is not the only field in medicine in which robotic manipulators can be used. Another autonomous robotic

grasping system, described by John E. Downey et al., introduces shared control of a robotic arm based on the

interaction of a brain–machine interface (BMI) and a vision guiding system . A BMI is used to define a user’s

intent to grasp or transfer an object. Visual guidance is used for low-level control tasks, short-range movements,

definition of the optimal grasping position, alignment of the robot end-effector, and grasping. Experiments proved

that shared control movements were more accurate, efficient, and less complicated than transfer tasks using BMI

alone.

Another case that requires fast robot programming methods and is implemented in medicine is the assessment of

functional abilities in functional capacity evaluations (FCEs) . Currently, there is no single rational solution that

simulates all or many of the standard work tasks that can be used to improve the assessment and rehabilitation of

injured workers. Therefore, the authors proposed that, with the use of the robotic system and machine learning

algorithms, it is possible to simulate workplace tasks. Such a system can improve the assessment of functional

abilities in FCEs and functional rehabilitation by performing reaching manoeuvres or more complex tasks learned

from an experienced therapist. Although this type of research is still in its infancy, robotics with integrated machine

learning algorithms can improve the assessment of functional abilities .

Although the main task of robotic manipulators is the direct manipulation of objects or tools in medicine, these

manipulators can also be used for therapeutic purposes for people with mental or physical disorders. Such

applications are often limited by the ability to automatically perceive and respond as needed to maintain an

engaging interaction. Ognjen Rudovic et al. presented a personalised deep learning framework that can adapt

robot perception . The researchers in the experiment focused on robot perception, for which they developed an

individualised deep learning system that could automatically assess a patient’s emotional states and level of

engagement. This makes it easier to monitor treatment progress and optimise the interaction between the patient

and the robot.

Robotic technologies can also be applied in dentistry. To date, there has been a lack of implementation of

fundamental ideas. In a comprehensive review of robotics and the application of artificial intelligence, Jasmin

Grischke et al. present numerous approaches to apply these technologies . Robotic technologies in dentistry

can be used for maxillofacial surgery , tooth preparation , testing of toothbrushes , root canal treatment

and plaque removal , orthodontics and jaw movement , tooth arrangement for full dentures , X-ray imaging

radiography , swab sampling , etc.

A summary of research focused on robotics in medical applications is provided in  Table 4. It can be seen that

robots are still not very popular in this area, and technological and phycological/ethical factors can explain this.

From the technical point of view, more active implementation is limited by the lack of fast and reliable robot

program preparation methods. Regarding psychological and ethical factors, robots are still unreliable for a large

portion of society. Therefore, they are only accepted with significant hesitation.

Table 4. Robotic solutions in medical applications.
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Objective Technology Approach Improvement Ref.

Create bridge between
reinforcement learning and

the surgical robotics
communities by presenting

the first open-sourced
reinforcement learning

environments for surgical da
Vinci robots.

Patient Side Manipulator
(PSM) arm.

Da VinciR©Surgical
Robot.

Large Needle Driver
(LND), with a jaw gripper
to grab objects such as

suturing needle.

Reinforced
learning,

OpenAI Gym
DDPG (Deep
Deterministic

Policy Gradients)
and HER
(Hindsight
Experience

Replay)
V-REP physics

simulator

Developed new
reinforced learning
environment for fast
and effective training
of surgical da Vinci

robots for
autonomous
operations.

A method of shared control
where the user controls a

prosthetic arm using a brain–
machine interface and

receives assistance with
positioning the hand when it

approaches an object.

Brain–machine interface
system.

Robotic arm.
RGB-D camera mounted

above the arm base.

Shared control
system.

An autonomous
robotic grasping

system

Shared control
system for a robotic
manipulator, making

control more
accurate, more

efficient, and less
difficult than an alone

control system.

A personalised deep learning
framework can adapt robot

perception of children’s
affective states and

engagement to different
cultures and individuals.

Unobtrusive audiovisual
sensors and wearable
sensors, providing the
child’s heart-rate, skin-
conductance (EDA),

body temperature, and
accelerometer data.

Feed-forward
multilayer neural

networks.
GPA-net

Achieved an average
agreement of ~60%
with human experts

to estimate effect and
engagement.

An overview of existing
applications and concepts of
robotic systems and artificial
intelligence in dentistry, for

functional capacity
evaluations, of the role of ML

in surgery using surgical
robotics, of deep learning vis-
à-vis physical robotic systems,

focused on contemporary
research.

An overview An overview An overview

Transoral robot towards
COVID-19 swab sampling.

Flexible manipulator, an
endoscope with a
monitor, a master

device.

Teleoperated
configuration for
swab sampling

A flexible transoral
robot with a
teleoperated

configuration is
proposed to address
the surgeons’ risks
during the face-to-
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Objective Technology Approach Improvement Ref.
face COVID-19 swab

sampling.

4. Path Planning, Path Optimisation

The process known as robotic navigation aims to achieve accurate positioning and avoiding obstacles in the

pathway. It is essential to satisfy constraints such as limited operating space, distance, energy, and time . The

path trajectory formation process consists of these four separate modules: perception, when the robot receives the

necessary information from the sensors; localisation, when the robot aims to control its position in the environment;

path planning; and motion control . The development of autonomous robot path planning and path optimisation

algorithms is one of the most challenging current research areas. Nevertheless, any kind of path planning requires

information about the initial robot position. In the stationary robot’s case, such information is usually easily

accessible, contrary to industrial manipulators mounted on mobile platforms. In mobile robots and automatically

guided vehicles (AGV), accurate self-localisation in various environments  is a basis for further trajectory

planning and optimisation.

According to the amount of available information, robot path planning can be categorised into two categories,

namely, local and global path planning. Through a local path planning strategy, the robot has rather limited

knowledge of the navigation environment. The robot has in-depth knowledge of the navigation environment when

planning the global path to reach its destination by following a predetermined path. The robotic path planning

method has been applied in many fields, such as reconstructive surgery, ocean and space exploration, and vehicle

control. In the case of pure industrial robots, path planning refers to finding the best trajectory to transfer a tool or

object to the destination in the robot workspace. It is essential to note that typical industrial robots are not feasible

for real-time path planning. Usually, trajectories are prepared in advance using online or offline programming

methods. One of the possible techniques is the implementation of specialised commercial computer-aided

manufacturing (CAM) software such as Mastercam/Robotmaster or Sprutcam. However, the functionality of such

software is relatively constrained and does not go beyond the framework of classical tasks, such as welding or

milling. The use of CAM software also requires highly qualified professionals. As a result, the application of this

software to individual installations is economically disadvantageous. As an alternative to CAM software, methods

based on the copying movements of highly skilled specialists using commercially available equipment, such as

MIMIC from Nordbo Robotics (Antvorskov, Denmark), may be used. This platform allows using demonstrations to

teach robots smooth, complex paths by recording required movements that are smoothed and optimised. To

overcome the limitations caused by the lack of real-time path planning features in robot controllers, additional

external controllers and real-time communication with the manipulator is required. In the area of path planning and

optimisation, experiments have been conducted for automatic object and 3D position detection  quasi-static path

optimisation , image analysis , path smoothing , BIM , and accurate self-localisation in harsh industrial

environments .
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5. Food Industry

As the world’s population grows, the demand for food also continues to grow. Food suppliers are under pressure to

work more efficiently, and consumers want more convenient and sustainable food. Robotics and automation are a

key part of the solution to this goal. The food production sector has been relatively slowly robotised compared to

other industries . Robotics is applied in food manufacture, packaging, delivery, and cookery (cake decoration)

. Although the food industry is ranked fourth in terms of the most-automated sectors, robotic devices capable of

processing nutrients of different shapes and materials are in high demand. In addition, these devices help to avoid

consequences such as food-borne illness caused directly by the contamination of nutrients by nutrient handlers .

For this purpose, a dual-mode soft gripper was developed that can grasp and suck various objects having a weight

of up to 1 kg. Soft grippers prevent damage to food .

Artificial intelligence-enabled robotic applications are entering the restaurant industry in the food processing and

guest service operations. In a review assessing the potential for process innovation in the restaurant sector, an

information process for the use of new technologies for process innovation was developed . However, the past

year, particularly due to the circumstances of COVID-19, has been a breakthrough year in robotisation in the food

industry.

6. Agricultural Applications

Agricultural robots are a specialised type of technology capable of assisting farmers with a wide range of

operations. Their primary role is to tackle labour intensive, repetitive, and physically demanding tasks. Robots are

used in planting, seedling identification, and sorting. Autonomous tractors perform the function of weeding and

harvesting. Drones and autonomous ground vehicles are used for crop monitoring and condition assessment. In

animal husbandry, robots are used for feeding cattle, milking, collecting and sorting eggs, and autonomous

cleaning of pens. Cobots are also used in agriculture. These robots possess mechanical arms and make

harvesting much easier for farmers. The agriculture robot market size is expected to reach USD 16,640.4 billion by

2026; however, specific robots, rather than industrial robots, will occupy the majority of the market.

7. Civil Engineering Industry

In general, the construction industry is relatively inefficient from the perspective of automation. Robotics are seldom

applied . The main identified challenges for higher adoption of robotics in the construction industry were grouped

into four categories: contractor-side economic factors; client-side economic factors; technical and work-culture

factors; and weak business case factors. Technical and work-culture factors include an untrained workforce;

unproven effectiveness and immature technology; and the current work culture and aversion to change .

The perspective of robotics in civil engineering is significantly better. Here, robotics provides considerable

opportunities to increase productivity, efficiency, and flexibility, from automated modular house production to robotic

welding, material handling on construction sites, and 3D printing of houses or certain structures. Robots make the
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industry safer and more economical, increase sustainability, and reduce its environmental impact, while improving

quality and reducing waste. The total global value of the construction industry is forecast to grow by 85% to USD

15.5 trillion by 2030 . Robots can make construction safer by handling large and heavy loads, working in

hazardous locations, and enabling new, safer construction methods. Transferring repetitive and dangerous tasks

that humans are increasingly reluctant to perform to robots means that automation can help address the labour and

skills crisis, and make the construction industry more attractive . Few classic robots are used in the

construction process due to the dynamic and inaccurately described environment; however, work on 3D buildings

and their environmental models reduces this limitation.
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