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Underwater video images, as the primary carriers of underwater information, play a vital role in human exploration

and development of the ocean. Due to the absorption and scattering of incident light by water bodies, the video

images collected underwater generally appear blue-green and have an apparent fog-like effect. In addition, blur,

low contrast, color distortion, more noise, unclear details, and limited visual range are the typical problems that

degrade the quality of underwater video images. Underwater vision enhancement uses computer technology to

process degraded underwater images and convert original low-quality images into a high-quality image. The

problems of color bias, low contrast, and atomization of original underwater video images are effectively solved by

using vision enhancement technology. Enhanced video images improve the visual perception ability and are

benefificial for subsequent visual tasks. Therefore, underwater video image enhancement technology has

important scientifific signifificance and application value. 

underwater vision  video/image enhancement  deep learning

1. Introduction

Visual information, which plays an essential role in detecting and perceiving the environment, is easy for

underwater vehicles to obtain. However, due to many uncertaintiesin the aquatic environment and the inflfluence of

water on light absorption and scattering,and the quality of directly captured underwater images can degrades

signifificantly. Largeamounts of solvents, particulate matter, and other inhomogeneous media in the water cause

less light to enter the camera than in the natural environment. According to the Beer-Lambert-Bouger law, the

attenuation of light has an exponential relationship with the medium. Therefore, the attenuation model of light in the

process of underwater propagation is expressed as:

 (1)

In Equation (1), E is the illumination of light, r is the distance, a is the absorption coeffificient of the water body, and

b is the scattering coeffificient of the water body. The sum of a and b is equivalent to the total attenuation

coeffificient of the medium.

The process of underwater imaging is shown in Figure 1. As light travels through water, it is absorbed and

scattered. Water bodies have different absorption effects on light with different wavelengths. As shown in Figure 1,

red light attenuats the fastest, and will disappear at about 5 meters underwater, blue and green light attenuate

slowly, and blue light will disappear at about 60 meters underwater. The scattering of suspended particles and
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other media causes light to change direction during transmission and spread unevenly. The scattering process is

inflfluenced by the properties of the medium, the light, and polarization. McGlamery et al.  presented a model for

calculating underwater camera systems. The irradiance of non-scattered light, scattered light and backscattered

light can be calculated by input geometry, source properties and optical properties of water. Finally, the parameters

such as contrast, transmittance and the signal-to-noise ratio can be obtained. Then, the classical Jaffe–McGlamery

 underwater imaging model was proposed. It indicates that the total illuminance entering the camera is a linear

superposition of the direct component, the forward scatter component, and the backscattered component

（2）

In the equation, Ed, Ej and Eb represent the components of direct irradiation, forward scattering, and

backscattering, respectively. The direct irradiation component is the light directly reflflected from the surface of the

object into the receiver. The forward scattering component refers to the light reflflected by the target object in the

water, deflflected into the receiver by the small angle of suspended particles in the water during straight

propagation. Backscattering refers to illuminated light that reaches the receiver through the scattering of the water

body. In general, the forward scattering of light attenuates more energy than the back scattering of light.

Due to the absorption and scattering of incident light by water bodies, the video images collected underwater

generally appear blue-green and have an apparent fog-like effect. In addition, blur, low contrast, color distortion,

more noise, unclear details, and limited visual range are the typical problems that degrade the quality of

underwater video images . Figure 1 shows some low-quality underwater images.   

 Figure 1. Some low-quality underwater images.

The existing underwater image enhancement techniques are classifified and summarized. As shown in Figure 2.
The current algorithms are mainly divided into traditional and deep learning-based methods. Traditional

methods include model-based and non-model methods. Non-model enhancement methods, such as the histogram

algorithm, can directly enhance the visual effect through pixel changes without considering the imaging principle.

Model-based enhancement is also known as the image restoration method. According to the imaging model, the

relationship between clear, fuzzy, and transmission images is estimated, and clear images are derived, such as

through the dark channel prior (DCP) algorithm . With the rapid development of deep learning technology and its

excellent performance in computer vision, underwater image enhancement technology based on deep learning is

also developing rapidly. The methods based on deep learning can be divided into those based on convolution
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neural networks (CNN)  and those based on generative adversarial networks (GAN) . Most of the existing

enhancement techniques are extensions of underwater single image enhancement techniques in the video fifield.

Since the development of underwater video enhancement technology is not fully mature, it will not classify for the

time being here.

Figure 2.

Classification of underwater image enhancement methods.

2. Traditional Underwater Image Enhancement Methods

2.1. Non-Physical Model Enhancement Methods

Due to the unique underwater optical environment, there are some limitations when traditional image enhancement

methods are directly applied to image enhancement, so many targeted algorithms are proposed, including

histogram-based, retinex-based, and image fusion-based algorithms.

(1) Histogram-based methods

Image enhancement based on the histogram equalization (HE) algorithm  transforms the image histogram from

narrow unimodal to balanced distribution. As a result, the original image has roughly the same number of pixels in

most gray levels (Table 1). 

Table 1. Histogram-based underwater image enhancement methods.
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Author Algorithm Contribution

Iqbal et al.
Unsupervised color correction method

Effectively removes blue bias and improves low
component red channel and brightness

Ahmad et
al. 

Adaptive histogram with Rayleigh stretch
limit contrast

Enhances detail and reduces over-enhancement,
supersaturated areas, and noise introduction

Ahmad et
al. 

Recursive adaptive histogram modification
combined with HSV model color correction

Better contrast in background area

Li et al. 
Contrast enhancement algorithm combining
dehazing and prior histogram

Improves contrast and brightness

Li et al. 
Underwater white balance algorithm
combined with histogram stretch phase

Shows better results in terms of color correction,
haze removal, and detail clarification

(2) Retinex-based methods

Retinex theory, based on color constancy, obtains the true picture of the scene by eliminating the influence of the

irradiation component on the color of the object and removing the uneven illumination (Table 2).

Table 2. Underwater image enhancement methods based on retinex theory.

Author Algorithm Contribution

Fu et al.
Variational framework based on retinex to
decompose and optimize reflectivity and
illumination

Solves problems of color distortion,
underexposure, and blurring

Bianco et
al. 

The chromatic components are changed, moving
their distributions around the white point (white
balancing) and histogram cutoff, and stretching of
the luminance component

Improves image contrast and it is suitable
for real-time implementation.

Zhang et
al. 

Extended multiscale retinex for underwater image
enhancement

Suppresses halo phenomenon

Mercado
et al. 

Multiscale retinex combined with reverse color loss
(MSRRCL)

Overcomes problem of uneven lighting;
color is more obvious

Li et al. 
Color correction algorithm based on MSR algorithm
combined with histogram quantization of each color
channel

Enhances underwater image contrast and
removes color bias

Zhang et
al. 

Multiscale retinex with color recovery based on
multi-channel convolution (MC)

Enhances image’s global contrast and
detail information, reduces noise, and
eliminates the influence of illumination

Tang et al. Underwater image and video enhancement method Improves image contrast and color, and
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Author Algorithm Contribution
based on multi-scale retinex (IMSRCP) suitable for underwater video

Hu et al.
Use the gravitational search algorithm (GSA) to
optimize the underwater image enhancement
algorithm based on MSR and the NIQE index

Improves adaptive ability to environmental
changes

Tang et al.
Propose an underwater image enhancement
algorithm based on adaptive feedback and Retinex
algorithm

Reduces the time required for underwater
image processing, improves the color
saturation and color richness

Zhuang et
al. 

A Bayesian retinex algorithm for enhancing single
underwater image with multiorder gradient priors of
reflectance and illumination

Solves problems of color correction,
naturalness preservation, structures, and
details promotion, artifacts, or noise
suppression

(3) Fusion-based methods

The image fusion algorithm fuses multiple images of the same scene to realize  omplementary information of

various images to achieve richer and more accurate image information after enhancement (Table 3).

Table 3. Underwater image enhancement methods based on image fusion algorithms.

Author Algorithm Contribution

Ancuti et
al. 

White balance and histogram equalization used to
obtain two images, and multiscale fusion algorithm
used to integrate underwater features

Noise reduction, improved global
contrast, significantly enhanced edges
and details for underwater video
enhancement

Ancuti et
al. 

Image is synthesized by using complementary
information between multiple images; process of
acquiring fused images and definition of weight
information are optimized

Images are more informative and
clearer, improves image exposure, and
maintains image edges

Pan et
al. 

Fusion strategy of Laplacian pyramid is used to fuse
defogging image and color correction image

Enhances underwater image contrast
and removes color bias

Chang et
al. 

Transmission mapping fusion based on optical
properties and image knowledge

Foreground has improved clarity, while
the background remains somewhat
blurry and more natural

Gao et
al. 

A method based on local contrast correction (LCC) and
multiscale fusion and the local contrast corrected
images are fused with sharpened images by the
multiscale fusion method

Solves the color distortion, low
contrast, and unobvious details of
underwater images

Song et
al. 

An updated strategy of saliency weight coefficient
combining contrast and spatial cues to achieve high-

Eliminates color deviation, achieves
high-quality fusion and a better de-
hazing effect
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Author Algorithm Contribution
quality fusion combine with white-balancing and the
global stretching

2.2. Physical Model-Based Enhancement Algorithm
   

Different from the non-physical model enhancement algorithm, the algorithm based on the physical model analyzes

the imaging process and uses the inverse operation of the imaging model to get a clear image to improve the

image quality from the imaging principle. It is also known as the image restoration technique. Underwater imaging

models play a crucial role in physical model-based enhancement methods. The Jaffe–McGlamery underwater

imaging model is a very widely used recovery model.

(1) Polarization-based methods

An underwater image restoration method based on the principle of polarization imaging utilizes the polarization

characteristics of scattered light to separate scene light and scattered light, estimate the intensity and transmission

coefficient of scattered light, and realize the imaging intensification (Table 4).

Table 4. Underwater image restoration algorithms based on polarization.

Author Algorithm Contribution

Schechner et
al. 

Polarization effect of underwater scattering is used to
recover underwater images

Improved visibility and
contrast

Namer et al. Polarization degree and intensity of background light are
estimated from polarized image

More accurate estimation of
depth map

Chen et al.
If there is an artificial lighting area, area is compensated

Eliminates effects of artificial
lighting on underwater images

Han et al. Backscattering effect is considered, and light source is
changed to alleviate the scattering effect

Point diffusion estimation
based on light polarization is
proposed

Ferreira et al.
Polarization parameters are estimated by the bionic
optimization method, and unreferenced mass measure is
used as the cost function for restoration

Achieves better visual quality
and adaptability

(2) Dark channel prior–based methods  

He et al.  proposed the dark channel prior (DCP) algorithm. According to statistics, it is found that there is always

a channel in most areas of a fog-free image, and a pixel has a meager gray value, which is called a dark channel.

The dark channel prior theory is used to solve the transmission image and atmospheric light value, and the

atmospheric scattering model is used to restore the image.

[30]

[31]

[32]

[33]

[34]

[4]



Underwater Vision Enhancement | Encyclopedia.pub

https://encyclopedia.pub/entry/20024 7/20

DCP algorithm has excellent defogging performance. When applied to underwater images, the dark channel is

affected because the water absorbs too much red light. Therefore, underwater DCP algorithm is usually improved

for this feature. Table 5 lists the underwater-specific DCP algorithms (Table 5).

Table 5. Underwater image restoration algorithms based on the DCP algorithm.

Author Algorithm Contribution

Yang et al. Median filtering is used to estimate depth of field,
and a color correction method is introduced

Improves calculation speed and contrast

Chiang et
al. 

Combined wavelength compensation and image
dehazing (WCID)

Corrects image blurring where artificial
light is present

Drews et
al. 

Underwater dark channel prior (UDCP) method
considering only blue and green channels

Underwater images have a more obvious
defogging effect

Galdran et
al. 

DCP algorithm improved by using minimization of
reverse red channel and blue-green channel

Processes influence of artificial light area,
improves image color trueness

Li et al. 
Red channel uses gray world color correction
algorithm, and blue and green channels use the
DCP algorithm

Significantly improves visibility and
contrast

Meng et al.
Different strategies (color balance or DCP)
selected to restore RGB combined with maximum
posterior probability (MAP) sharpening

Eliminates underwater color projection,
reduces blur, improves visibility, and better
retains foreground textures

(3) Integral imaging-based methods

Integral imaging technology is based on a multi-lens stereo vision system, which uses lens array or camera array

to quickly obtain information from different perspectives of the target, and combines all element images (each

image that records information from  ifferent perspectives of a three-dimensional object) into element image array

(EIA) (Table 6).

Table 6. Underwater image restoration algorithms based on the integral imaging.

Author Algorithm Contribution

Cho et al.
Use statistical image processing and computational 3D
reconstruction algorithms to remedy the effects of
scattering

The first report on 3D
reconstruction of objects in turbid
water using integral imaging

Lee et al. Applies spectral analysis and introduces a signal model
with a visibility parameter to analyze the scattering signal

Reconstructed image presents
better color presentation, edge,
and detail information.

Satoruet et
al. 

Combined with maximum posterior estimation, bayesian
scattering suppression is achieved

This method achieves a higher
structural similarity index measure
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Author Algorithm Contribution

Neumann et
al. 

Three-dimensional reconstruction is realized by
combining the gray-world assumption applied in the
Ruderman-opponent color space

Locally changing luminance and
chrominance are taken into
account

Bar et al.
Single-shot multi-view circularly polarized speckle images
collected by lens array and deconvolution algorithm
based multiple medium sub-PSFs viewpoints are
combined

Improve recovery of hidden
objects in cloudy liquids

Li et al. 
Reconstruct the images obtained in a high-loss
underwater environment by using photon-limited
computational algorithms

Improves the PSNR in the high-
noise regime

3.1. Convolutional Neural Network Methods

LeCun et al.  first proposed the convolutional neural network structure LeNET. The convolutional neural network

is a kind of deep feedforward artificial neural network. It is composed of multiple convolutional layers that can

effectively extract different feature expressions, from low-level details to high-level semantics, and is widely used in

computer vision. In the underwater image enhancement algorithm based on CNN, according to whether the

algorithm uses a physical imaging model to restore, it can be divided into non-physical and combined physical

methods.

(1) Combined physical methods

Traditional model-based underwater image enhancement methods usually need to estimate the transmission graph

and parameters of the underwater image based on prior knowledge and other strategies, and those estimated

values thus have poor adaptability. The method combined with the physical model mainly uses the excellent

feature extraction ability of the convolutional neural network to solve the parameter values in the imaging model,

such as the transmission diagram. In this process, CNN replaces the assumptions or prior knowledge used in

traditional methods, such as dark channel prior theory (Table 7).

Table 7. Underwater image enhancement method combined with physical model CNN.

Author Algorithm Contribution

Shin et al. Learn the transmission image and background
light of the underwater image at the same time

Good defogging performance

Ding et al.
Adaptive color correction method is used for color
compensation of underwater images, combined
with convolutional neural network model

Reduces image blur

Wang et
al. 

Color correction and “defog” processes trained
simultaneously, and pixel interference strategy is
used to optimize the training process

Improves convergence speed and accuracy
of learning process

[45]
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Author Algorithm Contribution

Barbosa et
al. 

Set of image quality metrics is used to guide
restoration process, and image is recovered by
processing analog data

Avoids difficulty of real scene data
measurement

Hou et al. Combined residual learning for underwater
residual CNN

Deep learning approaches combine data-
driven and model-driven approaches

Cao et al.
Convolutional neural network is used to learn
background light and transmission images
directly from input images

Reveals more image details

Wang et
al. 

Parallel convolutional neural network estimates
transmission image and background light

Prevents halo, maintains edge features

Li et al. 
Design an underwater image enhancement
network via medium transmission-guided multi-
color space embedding

Exploiting multiple color spaces embedding
and the advantages of both physical model-
based and learning-based methods

(2) Non-physical model methods

In the non-physical model, the original underwater image is sent into the network model with the help of CNN’s

powerful learning ability. The enhanced underwater image is directly output after convolution, pooling,

deconvolution, and other operations (Table 8).

Table 8. Underwater image enhancement methods of non-physical model CNNs.

Author Algorithm Contribution

Perez
et al.

Deep learning method is used to learn the mapping model
of degraded and clear images

First to use deep learning for
underwater image enhancement

Sun et
al. 

Underwater image is enhanced using an encoder–decoder
structure

Significant denoising effect,
enhanced image details

Li et al. Gated fusion network with white balance, histogram
equalization, and gamma correction algorithms is used

Reference model for underwater
image enhancement with good
generalization performance

Li et al.
Training data are synthesized by combining the physical
model of the image and optical characteristics of
underwater scenes and used to train the network

Retains original structure and texture
while recreating a clear underwater
image

Naik et
al. 

Shallow neural networks connected by convolutional
blocks and jumps are used

Maintains performance while having
fewer parameters and faster speed

Han et
al. 

A deep supervised residual dense network uses residual
dense blocks, adds residual path blocks between the

Retains the local details of the image
while performing color restoration
and defogging
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Author Algorithm Contribution
encoder and decoder, and employs a deep supervision
mechanism to guide network training

Yang et
al. 

A non-parameter layer for the preliminary color correction
and a parametric layers for a self-adaptive refinement
constitute a trainable end-to-end neural model

The results have better details,
contrast and colorfulness

Wang
et al.

Integrate both RGB Color Space and HSV Color Space in
one single CNN

Addresses the problem that RGB
color space is insensitive to image
properties such as luminance and
saturation

3.2. Generative Adversarial Network-Based Methods

Generative adversarial network(GAN) was proposed by GoodFellow et al. . A generative adversarial network

(GAN) is used to produce better output through the game confrontation learning of generator and discriminator. By

learning, the generator generates an image as similar to the actual image as possible so that the discriminator

cannot distinguish between true and false images. The discriminator is used to indicate whether the image is a

composite or actual image. If the discriminator cannot be cheated, the generator will continue to learn. The process

is shown in Figure 5. The input of the generator is a low-quality image, and the output is a generated image. The

input of the discriminant network is the generated image and the actual sample, and the output is the probability

value that the generated image is true. The probability value is between 1 and 0. As an excellent generation model,

GAN has a wide range of applications in image generation, image enhancement and restoration, and image style

transfer mutual (Tables 9 and 10).

Table 9. Underwater image enhancement methods based on CGAN.

Author Algorithm Contribution

Li et al.
Underwater image generation countermeasure
network WaterGAN, using atmospheric images and
depth maps to synthesize underwater images as the
training dataset

Constructs two-stage deep learning
network using raw underwater images,
authentic atmospheric color images, and
depth maps

Guo et
al. 

New multiscale dense generated adversarial
network(UWGAN)

Multiscale manipulation, dense cascading,
and residual learning improve performance,
render more detail, and take full advantage
of features

Liu et
al. 

Multiscale feature fusion network for underwater
image color correction (MLFcGAN) realized
multiscale global and local feature fusion in the
generator part

Conducive to more effective and faster
online learning

Yang
et al.

Dual discriminator designed to obtain local and global
semantic information, thus constraining the multiscale

Generated images are more realistic and
natural
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Author Algorithm Contribution
generator

Li et al.
A simple and effective fusion adversarial network that
employs the fusion method and combines four
different losses

Corrects color and has superiority in both
qualitative and quantitative evaluations

Liu et
al. 

Combine the Akkaynak–Treibitz model and
generative adversarial network

Achieves clear results with good white
balance and visually quite close to the
ground-truth images

Table 10. Underwater image enhancement and restoration based on CycleGAN.

Author Algorithm Contribution

Fabbri
et al. 

Unpaired underwater images are used for training,
then generated clear images and corresponding
degraded images are formed into a training set

Absolute error loss and gradient loss are
added to the loss function

Lu et al.
Underwater image restoration based on a multiscale
CycleGAN network; establishes adaptive image
restoration process by using dark channel prior to
obtaining depth information of underwater images

Improves underwater image quality,
enhances detail structure information,
has good performance in contrast
enhancement and color correction

Park et
al. 

A pair of discriminators is added based on Cyc1eGAN;
introduces adaptive weighting method to limit loss of
the two discriminators

Stable training process

Islam et
al. 

Supervises training based on global content, image
content, local texture, and style information

Good color restoration and image
sharpening effect, fast processing speed
can be used in underwater video
enhancement

Hu et
al. 

Add the natural image quality evaluation (NIQE) index
to the GAN

Provides generated images with higher
contrast and tries to generate a better
image than the truth images set by the
existing dataset

Zhang
et al. 

An end-to-end dual generative adversarial network
(DuGAN) uses two discriminators to complete
adversarial training toward different areas of images

Restores detail textures and colour
degradations

4. Underwater Video Enhancement

With the development of underwater video acquisition and data communication technology,real-time underwater

video transmission becomes possible. Underwater video with spatiotemporal information and motion

characteristics has higher application prospects than underwater images in ocean development. Because of the

optical properties, underwater video has some similar problems to underwater images, such as color bias, image

blur, low contrast, uneven illumination, etc. At the same time, due to the influence of water flow on video acquisition
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equipment, the texture features and details of moving objects are weakened or disappear. These problems

seriously affect the ability of the underwater video system to accurately collect scene and object features. Unlike

atmospheric video enhancement technology, which tends to solve blur and jitter, underwater video enhancement

focuses more on solving the harmful effects of the unique optical environment on color and visibility.

Compared with underwater image enhancement technology, underwater video enhancement is more complicated.

The research in this direction has not yet reached a mature stage. Most of the existing underwater video

enhancement methods are extensions of single image enhancement algorithms. When underwater image

enhancement technology is directly applied to video, each frame is enhanced and then connected into a new

video. Due to the differences in transmission images and background light between frames, the continuity of the

enhanced video is not well maintained, and time artifacts and interframe flicker phenomena can occur (Table 11).

Table 11. Underwater video enhancement algorithms.

Author Algorithm Contribution

Tang et
al. 

Extracts features from low-resolution images after
subsampling; subsampling and IIR gaussian filter are
used to form a fast filter to complete the fast two-bit
convolution operation

Solves the problem of the strain on
computing resources by increased scale
effectively

Li et al.
The convolutional layer in the network structure of
UMCNN is not connected to other convolutional layers
in the same block and the network does not use any full
connection layer or batch normalization processing

The total depth of the network is only 10
layers, which reduces the computational
cost and is easy to train

Islam et
al. 

In the generator part, the model only learns 256 feature
graphs of size 8 × 8; in the discriminant part, the
recognition is only based on patch-level information

The entire network structure requires
only 17 MB of memory and calculates
more efficiently

Ancuti
et al.

The time-bilateral filtering strategy is used for the white
balance version of the video frame. Time-sequence
information is added in time-domain bilateral filtering

Enhances sharpness and improves the
stability of the smooth region. Achieves
smoothing between frames and
maintains temporal coherence

Li et al.
The depth cues from stereo matching and fog
information reinforce each other. Calculates the fog
transmission of each pixel directly from the scene depth
and the estimated fog density

Eliminating the ambiguity of air albedo
during defogging maintains the time
consistency of the final defogging video

Qing et
al. 

The images of subsequent frames are guided by the
grayscale image of the first frame and combine the
current frame’s background light estimation to avoid
frequent changes of the atmospheric light value

Reduces the computational complexity
and the scintillation caused by changes
in the transmission image and
atmospheric light value

To verify the performance of these algorithms, some typical algorithms from different categories were selected,

including CLAHE , MSRCR , FUSION , UDCP , UWCNN , UGAN , and FGAN . Being tested it

on an effective and public underwater test dataset (U45) , which includes the color casts, low contrast and haze-

[19]

[59]

[73]

[23]

[76]

[77]

[78] [16] [24] [37] [59] [70] [73]

[79]



Underwater Vision Enhancement | Encyclopedia.pub

https://encyclopedia.pub/entry/20024 13/20

like effects of underwater degradation. This represents a typical feature of low-quality underwater images. The

results are shown in Figure 3, Figure 4 and Figure 5.

Figure 3. Enhanced results of color casts.

Figure 4. Enhanced results of low contrast.
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Figure 5. Enhanced results of haze.
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