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Salmonids are affected by the economically significant whirling disease (WD) caused by the myxozoan parasite
Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread to different regions of North
America, Europe, New Zealand, and South Africa. Among salmonids, rainbow trout is considered the most highly
susceptible host. Upon entering to the host’s body, the parasite invades the spine and cranium, resulting in whirling
behaviour, a blackened tail, and destruction of cartilage. The disease is characterized by the infiltration of

numerous inflammatory cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration.

myxozoa M. cerebralis immune modulation r-PCR flow cytometry innate immunity

| 1. Introduction

Fish, being a potential source of nutrition, play an important part in meeting global food demands . Climate
change has created favourable conditions for the parasitic lifecycle, posing a serious threat to aquaculture,
including salmonid fishes [, Among these threats, myxozoan parasites, particularly Myxobolus cerebralis, is a
major challenge for salmonids. It is the causative agent of the serious disease named as whirling disease (WD) !
4Bl studies have suggested that M. cerebralis stands out as the most notable and economically impactful
parasite, leading to an estimated loss of $35-60 million in the US alone B, While previously believed to be
enzootic only in Eurasia, WD has now been detected in various salmonid-rearing regions across Europe, the USA,

Canada, South Africa, and New Zealand (£,

Whirling disease affects multiple salmonid fishes with varying severity and disease onset L9121  Clinical signs can
be observed in Chinook salmon (Oncorhynchus tshawytscha), brook trout (Salvelinus fontinalis), sock eye salmon
(Oncorhynchus nerka), rainbow trout (Oncorhynchus mykiss), and brown trout (Salmo trutta) R92I13] - Although
different studies have revealed clinical progression in brown trout, rainbow trout is considered the most highly
susceptible host L4II13I16] The clinical signs caused by WD include a blackened tail, whirling behaviour, and death
in infected fish LAU8ILA Typifex tubifex, as an obligate invertebrate host, releases triactinomyxon spores (TAMSs)
(201 \which invade fish through mucous cell openings in skin, gill epithelium, and the oral route [l Following
penetration, the sporoplasm travels within the skin and gill epithelium, subsequently invading epithelial cells 22, As
a result of internal budding within a cytoplasmic vacuole, the sporoplasm produces primary and secondary cells
(211, These primary cells, containing vegetative nuclei and generative cells, are named as plasmodia. They migrate

through the peripheral nerves to spinal cord and brain and reside in the cartilage, leading to destruction of the
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ossification processes in the entire skeleton and necrosis due to granulomatous inflammation 2422l This cartilage

damage activates the fish host's immune system 18],

The fish immune system comprises two main components: the innate and adaptive immune systems 23l Innate
immunity is activated by pathogens and serves as the host's first line of defence against infections [24],
Myxosporean spp. often provoke minimal or no host responses 21251 |n fact, it is believed that they employ such a
manipulative strategy to evade the fish immune system, avoiding local immune responses and potential
inflammatory reactions at the point of entry 28127 Specifically, M. cerebralis uses an immune-privileged pathway to
invade the head cartilage via the central nervous system and peripheral nerves, where there is a minimum of
immune response 2. TAMs exhibit a higher affinity for rainbow trout compared to brown trout. On the other hand,
brown trout triggers more protective immune mechanisms that contribute to disease resistance 14. The attachment
of TAMs is influenced by mucosal factors, and a cellular protective response can be observed through the

presence of eosinophils in the root ganglia of infected fish (22!,

Limited information is available regarding resistance and susceptibility mechanisms among M. cerebralis and fish
host species [28. However, recent investigations have used fluorescence-activated cell sorting (FACS) 22 to reveal
certain aspects of cellular and cytokine responses against M. cerebralis, thereby enhancing understanding of the
factors underlying susceptibility and resistance to WD [2BY3L32] preyiously, both innate and acquired immune
mechanisms have been reviewed in myxozoans 3241 various efforts have also been made to investigate the role
of STAT3 in Th 17 cell differentiation B2 and to study the potential inhibitory actions of suppressors of cytokine
signalling (SOCS1 and SOCS3) on IFNy and IL-1 BY during WD. Moreover, the expression levels of natural
resistance-associated macrophage proteins (Nramp a and B) [28 have been studied to stimulate the immune
systems. An effort has been made to silence M. cerebralis serine protease (MyxSP-1) within the T. tubifex host
using short-interfering RNA techniques to disrupt the life cycle of M. cerebralis 28, Nevertheless, a complete
understanding of fish immune mechanisms against M. cerebralis remains to be uncovered “IB4. Although, the
aforementioned research studies have investigated the expressions of different immune related genes, offering
insights into the role of these genes in immunity against WD, further exploration is still required to fully comprehend

the whole function of the immune system of host in defence mechanism against WD.

| 2. Clinical and Histopathological Changes in Diseased Fish

The parasite migrates to the spine and cranium, causing inflammation and lesions resulting in cranium destruction,
which leads to damage and deformation of the skeleton in fish 281, Moreover, it causes spinal cord constriction and
brain stem compression, resulting in whirling behaviour and pressure on nerves, which control the pigment cells
causing a black tail BI32 Numerous intra- and intercellular sporoplasm cells are found in the epithelia of the buccal
cavity and epidermis (Figure 1a). Myxobolus cerebralis spores can also be found in gill arches 141, Parasitic stages
can be observed between the nerve fibres of the spinal cord (Figure 1b) 18 as well as in the head cartilage,
vertebrae and gills 49, The presence of cartilaginous necrotic foci rich in parasitic stages and vegetative cells
characterizes the cranial lesions (Figure 2). The disease is characterized by the infiltration of numerous

inflammatory cells, primarily lymphocytes and macrophages, with onset of fibrous tissue infiltration 1. Reduced
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ability to maintain an upright orientation of the body was suggested to be due to the damage of the vestibular-
auditory apparatus 2. Following penetration through the integumentary system, the parasite attacks the nervous
system directly, so scientists have focused more on immune studies in the cartilage and nervous system of

salmonids.

Figure 1. Presence of parasitic stages of M. cerebralis (black arrows) in buccal cavity mucosa, x700 (a), and in
nerve fibres and spinal cord, x1050 (b) lesions of the epidermis, x2800 (c) (Adapted from Sarker et al. 2015) 16,

Figure 2. Aggregates of parasitic stages (black arrows) in the cartilage, 12 weeks post exposure, x700 18],
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| 3. Innate Immune Response

Two immune mechanisms are involved in fish immunity: innate immunity and adaptive immunity, also named the
non-specific and specific immune systems, respectively 48l Being efficient, innate immunity is considered the
primary component in combating disease-causing pathogens in comparison with the acquired immune system [44],
Innate immunity is a rapidly responding strategy but does not deliver protection for long period of time 2. The
categorization of the innate immune mechanism is based on three compartments: the physical barrier and cellular
and humoral factors [261(48],

3.1. Role of Physical Barrier in Immunity against M. cerebralis

The physical component of the immune system is a significant part of the innate immune system in fish. It includes
scales, the mucous layer and epithelium present in the skin, gills and gastrointestinal tract, providing resistance to
various infections 4714811491 Fyrther, immune cells such as macrophages, lymphocytes, and eosinophilic granular
cells are also found in the epidermis BBABL The triactinomyxon spores of M. cerebralis enter the fish body
through these physical barriers (22521 and encounter mucous barriers that consist of a complex of mucins
containing lectins, lysozymes, C-reactive proteins, complements, haemolysins commensal microbiota, pentraxins
and immunoglobulins (IgM) B3IB4IBSIESIST These biochemicals substances have biocidal or biostatic functions B8,
A study revealed the destruction of M. cerebralis within the cytoplasm of fish epithelial cells (21, There is another
report about presence of parasitic developmental stages in cytoplasm of phagocytes in the epidermis of the
rainbow trout B9, During the first few hours of intrapiscine development, M. cerebralis proteases were upregulated
in the fins and gills after invasion. Genes encoding the serine protease (MyxSP-1) and cysteine protease (MyxCP-
1) were assessed post infection. Upregulation in the expression of these genes was reported in the gills and dorsal
fin tissues Y61 There was additional identification of the serine protease gene (MyxSubtSP) from M. cerebralis
(621 sarker et al. (28] used short-interfering RNA (siRNA) to induce RNA interference (RNAI), targeting the MyxSP-1
for development of intervention strategy. The study silenced M. cerebralis MyxSP-1 in its annelid host T. tubifex via
siRNA-induced RNAI. T. tubifex were infected with M. cerebralis myxospores and were subjected to treatment with
MyxSP-1 siRNA or negative control siRNA, both at 2 uM concentration for 24 h at 15 °C. This treatment occurred at
24 h post infection (hpi), 48 hpi, 72 hpi, 96 hpi, 1 month post infection (mpi), 2 mpi and 3 mpi, respectively. After the
final siRNA treatment at 3 mpi, the siRNA-treated T. tubifex were collected, and the expression of the MyxSP-1
gene was assessed using qPCR (Figure 3). When it was applied to rainbow trout fry, it prevented whirling disease
and induced sustained RNAI in T. tubifex, representing a promising RNAi-based therapy for whirling disease in
salmonids 28, It would be beneficial to explore the optimization of sSiRNA methods and dosages to increase the
efficiency of MyxSP-1 gene silencing in T. tubifex. Moreover, adapting RNAI therapy for diverse salmonid species

and environments is essential for a comprehensive whirling disease strategy.
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Figure 3. Normalized gene expression of MyxSP-1 gene after siRNA treatment of T. tubifex at different time points
post infection (* p < 0.0001; ** p < 0.001; *** p < 0.005) 28],

3.2. Cellular Immunity

Like mammals, the immune cell populations in fish include macrophages, lymphocytes, neutrophils, eosinophilic
granular cells, basophils, and dendritic cells. Additionally, fish possess melanomacrophage centres and rodlet cells
(RC) [63],

3.2.1. Macrophages

Macrophages have a central role in immunity owing to their function in phagocytosis and lymphocyte activation.
They have distinct receptors with the ability to recognize (3-glucan, which allows immunostimulants to intensify
leukocytes’ respiratory burst by producing reactive oxygen species possessing bactericidal properties 64l In
macrophages, nitric oxide is produced in ample amounts by inducible nitric oxide synthase iINOS, and assumes a
pivotal role in the process of inflammation 82, Previous studies have reported increased iNOS expression after M.
cerebralis infection within progressive time periods of the disease. These observations were in the infected
susceptible Trout lodge (TL) strain, while in the case of the resistant Hofer strain (HO), greater expression was
evident only at 8 days post exposure (PE) [88l. Arginase is the distinctive enzyme involved in promoting the
macrophage’s proinflammatory response 4. There are two different isoforms of arginase, arginase-1 and
arginase-2 [%8l. |n fish, arginase-2 is subjected to distinct regulatory mechanisms and is implicated in inducing an
alternative activation state in fish macrophages (7. A qRT-PCR-based study measured the expression level of
arginase-2 and INOS after exposure to M. cerebralis infection in rainbow trout. The susceptible fish strain TL

exhibited increased levels of arginase-2 at 2 h, while in the case of resistant strain HO, the increase was observed
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8 days after exposure €8], The expression level of INOS was upregulated in the susceptible strain from 24 h to 8
days post exposure, whereas in the resistant strain, this upregulation was observed only at 8 days post exposure.
As a result of increased INOS expression, it is expected that the inflammatory response and tissue damage will be
more significant than strain H and strain T being unable to mount an effective immune response compared to
resistant strains 2. A research study compared the post-exposure expression level of Nramp o and B to M.
cerebralis. Natural resistance-associated macrophage proteins (Nramp) have been considered a central figure in
the innate immune response that arouses macrophage activity and boosts the macrophage’s capability to Kill
phagocytized pathogens. Downregulation of both genes Nramp o and Nramp  was noted in the vulnerable
American TL strain at day 14 and day 40 following exposure, respectively 28 This discovery indicated a possible
Nramp involvement in the negative feedback mechanism 9. Other studies have also reported similar gene
expression in response to pathogens, but the cause of this regulation still needs to be disclosed [LZ2I73]
Exploring the immune functional role of Nramp in the host through the regulation of the negative feedback

mechanism would be a captivating endeavour.

3.2.2. Lymphocytes

Lymphocytes are defensive cells analogous to B cells, T cells, macrophages, cytotoxic cells, and leukocytes [4774]
[73l, Haematological responses against triactinomyxon spores of M. cerebralis have been investigated 8. Lower
numbers of lymphocytes were reported in infected fish. In salmonid fish, the presence of lower number of
lymphocytes has been reported in Saprolegina-infected brown trout X4, in rainbow trout infected with Vibrio
anguillarum 28 and post exposure to copper 2. Physiological processes leading to stress [BAB1 ajterations in
dynamics of lymphocytes due to the direct interaction of the fish immune system, lymphocyte destruction by
pathogenic agents, and migration of lymphocytes from peripheral blood to invaded tissue are multiple factors

involved in the cause of lymphopenia [Z8]82],

3.2.3. Granulocytes

Fish granulocytes are traditionally referred to with the terms neutrophil, basophil, and eosinophil. However, other
terms such as eosinophilic granulocytes or fine granulocytes have also been used 3. In mucosal infections (skin,

gills, and intestines), granulocytes and phagocytes are typically the most prevalent immune system cells [63],

A wide range of hosts and variability in host susceptibility to M. cerebralis are evident 1322, |t js thought that brown
trout’s resilience compared to other salmonid hosts [B4I3 js a result of this host’s evolutionary relationship with M.
cerebralis in its native European habitat 88, However, assuming that co-adaptation is the only cause of resistance
based solely on geographic proximity is difficult to reconcile with the robust resilience of indigenous Trout lodge
species like coho salmon 13, Despite the fact that precise defence mechanisms remain incompletely elucidated,
the existence of eosinophilic granular leucocytes in the root ganglia of afflicted brown trout, as opposed to rainbow

trout, suggests the potential for a cellular protective response against the parasite (28!,

3.2.4. Mast Cells
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Being a part of natural immunity, mast cells are found close to the skin’s blood vessels, gills, gastrointestinal tract,
and ovaries &7, These cells are identified using electron microscopy as exhibiting numerous cytoplasmic electron-
dense granules. Various proteins like desmin, CD117, and S100 proteins are expressed by mast cell granules 8!,
A number of factors, notably chronic inflammation and infection by parasites, lead to the induction of mast cells in

fish tissues and organs (82,

A study concluded that coho salmon are immune to infection and the emergence of symptoms associated with WD
(201 Coho salmon, unlike rainbow trout or chinook salmon, which are susceptible to M. cerebralis infection,
exhibited an abundance of eosinophilic granule cells (EGC) or mast cells in parasite-induced lesions or ganglia
containing parasitic stages 29, Brown trout species that are mildly resistant to M. cerebralis have shown similar
mast cell responses 83184l For this reason, EGCs were suggested to have a role in the immunity of salmonids to
whirling disease, but in general, their role is still unresolved B, and detailed investigation could be helpful for

future endeavours.

3.2.5. Rodlet Cells

Rodlet cells are recognized by their distinctive thicker capsule-like cell borders and the presence of rodlet
cytoplasmic inclusions resembling rods, and are closely related to inflammatory cells (eosinophile granule cells,
mesothelial cells, epithelioid cells) 22 involved in the response against myxosporea 2324 Most often, these cells
are found within the cardiac region, kidney, spleen, thymus, skin, gills, pancreas, gall bladder, and blood vessel
endothelium BZ. They are responsible for various functions, having a secretory defensive role 22 and carrying out
pH control, osmoregulation, electrolyte, and ion transport. They are mostly observed during parasitic infections,
and can be triggered by any form of tissue damage, which ultimately stimulates leukocyte reaction due to
chemotactic stimuli 241281 Disparity in the distribution of rodlet cells can be seen among various fish families. In
salmonids, helminth infections are thought to be the reason for the induction of local recruitment of rodlet cells in
affected epithelial cells 28], Although some reports on rodlet cells and their defensive role in salmonids and other
fish families against various parasites are available 27, the role of these cells during whirling disease still needs to

be explored, and this would be fascinating development.

3.3. Humoral Immunity

Humoral immune parameters are a variety of soluble compounds that act as preventive agents by limiting the
growth of microbes and neutralizing the enzymes on which the pathogen depends for pathogenesis [63l. Multiple
nonspecific protective substances, including lectins, transferrin, antimicrobial peptides, and lysozymes, inhibit or
suppress microbial growth 48, In the case of myxosporean infections, multiple humoral innate factors such as
lysozymes, peroxidases, and compliments are engaged in the eradication of pathogens [8. During the
development of whirling disease, parasites degenerate after entry into the host’'s skin, and do not reach the
peripheral nervous system 21, Humoral immunity is thought to be involved in eliminating the M. cerebralis parasite

from the fish’s skin, but the actual mechanisms involved should be interrogated 52,

3.4. Cytokine Response
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Cytokines, being signalling low-molecular-weight secretory proteins, are considered regulators of the immune
mechanism BUE9 They are produced at the entry sites of pathogens to control phagocytes and neutralize entering
microorganisms 199 |n general, fish have been found to possess various cytokines, including interleukin-1p (IL-
1B), transforming growth factor-B (TGF-B), tumor necrosis factor-a (TNF-a), chemokines, and interferon (IFN) [101]
(202][103][104] The |FN-y related inflammatory response is modulated by SOCS proteins, and is involved in host's
response to M. cerebralis infection. Differential modulation of several interleukins (IL-17A, IL17-C, IL-21) and RORy
after M. cerebralis infection indicates the function of these molecules in rainbow trout immunity against the parasite
(391 Other studies have reported increased post-exposure expression of pro-inflammatory cytokines like IFNy and
IL-1B in brown trout and rainbow trout against M. cerebralis 821951 The increase in gene expression indicates their
role in host protection against the infection B9, The expression induction of TGF-B1b, SOCS1, and SOCS3 in
brown trout following M. cerebralis exposure signifies their importance in mediating proper immune protection and

restraining excessive inflammatory responses during the course of the infection B9,

The gene expression levels of SOCS1 and SOCS3 genes have been investigated following exposure to M.
cerebralis. The parasite triggered the expression of SOCS1, IL-6-dependent SOCS3, IL-10, and Treg-associated
transcription factor FOXP3 in the TL susceptible strain, which caused limited STAT1 and STAT3 stimulation,
thereby impacting the Thl7-mediated immune response 2. The expression of SOCS1 and SOCS3 was
instigated, which inhibits the stimulation of STAT1 and STAT3 in American TL strain, thus resulting in an imbalance
of Th17/Tregl7 and rendering the host incapable of launching a defensive reaction or regulating inflammatory
responses, increasing vulnerability to WD. Conversely, within the resistant HO rainbow trout strain, the expression
of SOCS1 and SOCS3 was controlled, while STAT1 and IL-23-mediated STAT3 expression enabled a more
protective immune reaction. Fish immunity was promoted by the successful balancing of Th17/Tregl7 responses,
which was maintained by increased expression of STAT1 and IL-23-mediated STAT3. Therefore, the study
demonstrated the key role of SOCS1 and SOCS3 in modulating the activation and significance of host immunity in
rainbow trout (22, Future investigations into the mechanisms of WD's resistance to disease should focus on STAT3

and other factors influencing Th17/Treg cell distribution and balance [B2I[23],

| 4. Adaptive Immune Responses to M. cerebralis

The adaptive immune response in fish depends on T and B cells, as well as the diversity and specificity of their
antigen receptors, which are called antibodies and T cell receptors, respectively 298107 For many years, it was
believed that fish could not mount an adaptive immune response to myxosporea [L08I12091110] However, it has now

been clearly confirmed that fish with various myxosporean infections, including whirling disease, have expressed
particular antibodies BL1L[112]

4.1. T Cells

T cells are a type of lymphocytes that bear a surface T cell receptor, which identifies antigens in conjunction with
MHC molecules BZ. Fish T cells include CD8+ cytotoxic T lymphocytes (CTL) and CD4+ T helper (Th) cells B3],

CTLs express the membrane bound glycoprotein CD8 and are capable of killing cells of the host that are infected
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(141 Th cells express CD4+ molecules and release cytokines that control the activity of other cells of immune
system. Fish CD4+ cells functionally differentiate into the effector subtypes Thil, Th2, Th17 and Treg [114][115][116]
By promoting CTL proliferation and macrophage activation, Thl cells in fish facilitate the coordination of the
immune response to ensure protection against intracellular infections 117, Th2 cells aid in the promotion of B cell
proliferation and antibody-mediated production, and are linked to immunity to external parasites 11811191 jyst like
in mammals, in fish, Thl and Th2 responses interact with IL4, lowering Th1l proliferation, and with IFNy, hampering
Th2 proliferation 12922101221 Th 17 cells are involved in mucosal immunity against extracellular pathogens
including fungi and bacteria; they secrete 1L17, IL21, and IL22 [118] Regulatory T cells produce the anti-
inflammatory cytokines 1L10 and TGF, which help regulate the immune response [123],

Interferon-related genes (IFNy and IRF1) were upregulated in rainbow trout infected with M. cerebralis, indicating
an activation of the innate immune system in both strains. At 24 h and later time points, TL strain showed greater
up-regulation of these two genes than the resistant HO strain B2l This trend of increased transcription may be
harmful to the susceptible TL strain, as it is necessary for IFNy to keep a balance between anti-pathogenic effect
and host inflammatory tissue damage 1241, In brown trout, the expression of IFNy was greater in HK, SP, and CF.
STAT3 expression was comparatively higher in the caudal fin of resistant HO fish, indicating it may induce
resistance in the HO strain through activation of Th17 cells 28, Th17 cells produce IL-17 and are thought to be the
key player in resisting M. cerebralis at the epithelia 39, Using flow cytometry, increased CD8+ and CD8-
(presumably CD4+) T cells were observed in the CF, spleen, and HK in the resistant HO fish strain. The resistant

strain exhibits a significantly more robust T cell response than the susceptible TL strain 22,

4.2. B Cells

Antibodies or immunoglobulins (IGs) are the primary elements of the immune response to infections 28, Pathogen
clearance through phagocytosis, virus and toxin neutralization, and complement cascade activation are a few of
the immunological mechanisms mediated by 1Gs [1231126] |n teleost, the main three B cell lineages have been
identified, resulting in the production of three different isotypes of immunoglobulins: IgM, IgD, and IgT/z 127, |gT
was detected in rainbow trout and identified as IgZ in zebra fish 63 Rainbow trout have expressed three
subcategories of IgT. The IgT1 subclass has been reported in gut 128 and mucosal lymphoid tissues (gills) 122!,
Similarly, IgT2 and 1gT3 have been observed to be present in lymphoid organs and serum, respectively (128 |gm
has a role in systemic immunity, with IgM+ B cells predominating within both the blood and various systemic

lymphoid organs, and during infection, their proliferation increases in the mucosal surface of skin and intestine (2%
131

Using flow cytometry, an increased cell count of IgM+ B was identified within the spleen, head kidney, and caudal
fin in the M. cerebralis-resistant HO rainbow trout strain 22, An experiment conducted by Ryce et al. (2003)
investigated the acquired immune response of rainbow trout to M. cerebralis. It was determined that initial
immunization exposure provides th fish with immunity to subsequent exposures 1321331 previously, a study
detected antibodies against triactinomyxon spores’ antigen via Western blot and ELISA 1331, Samples from infected

rainbow trout in the wild or in controlled laboratory experiments showed positive results using these assays. Fish
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that responded through antibody production to early stages of infection were subjected to Western blotting
analysis, which demonstrated a varied antibody response without a regular or recurring pattern of antigen
recognition. However, strong naturally acquired immunity is evident in reinfected rainbow trout, as these fish
resisted the penetration of even a large number of spores. The acquired resistance was only found among formerly

actively infected rainbow trout with cartilage lesions B[133],

| 5. Immune Modulation in WD-Resistant and Susceptible Fish

M. cerebralis can infect multiple species of salmonids LA134I135] Among the salmonids, brown trout is regarded as
resistant, whereas rainbow trout is the most susceptible species and expresses serious disease consequences 19,
Coho salmon (Onchorynchus kisutch) is also considered a resistant strain, while the European Danube salmon
(Hucho hucho) is highly vulnerable to WD 29 |t is not completely clear what causes the variable degrees of
resistance shown in salmonids, and it seems that every species defends against the sickness through different
mechanisms [121184],

Severin et al. 8 evaluated the role of macrophages in the susceptibility of two different rainbow trout strains
infected with M. cerebralis. The expression level of arginase-2 was noticeably more elevated in the susceptible
strain TL than in the resistant strain Hofer (HO) at 2 h and 8 days post exposure. Moreover, the expression of INOS
was markedly induced at 24 h to 8 days post exposure in the susceptible American Trout lodge (TL) strain, and
only at 8 days post exposure in the German strain HO. These findings suggested a low capability of the susceptible
strain to regulate a successful immune response against infections with M. cerebralis €8, Further, a study explored
the dynamic transcriptional response of metallothionein and innate immune response genes to WD 138l The
obtained gene expression data elicited a more protective innate immune response of the Hofer strain than that of
Trout lodge strain. The expressions of IFN-g, IL-1b, IRF1, and iNOS genes were higher in both susceptible and
resistant rainbow trout after infection with M. cerebralis. In a different study, Nramp, as a candidate gene for
resistance, was investigated in brown trout and rainbow trout after exposure to M. cerebralis. Reduced expression
of Nramp o and B was evident in the Trout lodge strain compared to the resistant brown trout 28, On the other
hand, STAT3 was the only gene that showed significant upregulation in the German HO strain, while remaining

consistent in the American TL strain 32!,

In a preceding experiment, the gene expression profile was determined by microarray analysis and verified through
gRT-PCR. Following exposure to M. cerebralis, the expression of ubiquitin-like protein 1 and interferon-regulating
factor 1 was up-regulated 100-fold and 15-fold, respectively, in both rainbow trout strains. The expression of
metallothionein B was increased over 5-fold in the resistant German HO strain compared to the susceptible
American TL strain, wherein it remained unchanged. Metallothionein B is known to play a role in immune response
and inflammation. On the other hand, the CC chemokine SCYA113 was increasingly expressed in the TL strain.
The CC chemokine SCYA gene is a member of the CC chemokine family that directs leukocytes to areas of
inflammation and infection 137 The differential expression of these genes indicates that leukocyte migration to the

infection site and their stimulation are crucial in determining fish’s vulnerability or resistance 138],
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Flow cytometry-based research was conducted to investigate the dynamics of local and systemic immune cell
responses in rainbow trout strains both susceptible and resistant to WD. A lower number of parasitic stages were
noticed in the epidermis of the HO strain than in the TL strain at 12 h post exposure (Figure 4).

Figure 4. Large intracellular aggregates of the developmental stages of M. cerebralis appear in the epidermis of

the susceptible host (a), while very few parasitic stages appear in the epidermis of the resistant strain (b) 22,

In caudal fins (CF), myeloid cells showed increased levels only at 24 h post exposure in HO fish, whereas TL
myeloid cells exhibited increased levels at all time points post exposure to M. cerebralis. The number of IgM* B
cells also increased in both resistant and susceptible fish at various time points during WD. Likewise, CD8"* and

CD8™ T cells were also upregulated at multiple time points in both rainbow trout strains of M. cerebralis-exposed
fish (Figure 5).
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Figure 5. Flow cytometric analysis of HO and TL fish’s CF myeloid cells (a), IgM+ B cells (b), CD8* T cells (c) and
CD8™ T cells (d) (22,

In the case of the head kidney (HK) and spleen of infected fish, the resistant HO strain elicited an increase in T

cells and a decrease in myeloid cells compared to the susceptible TL strain. IgM* B cells and CD8* T cells were
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also markedly elevated in the HO strain compared to the TL strain. In the spleen, CD8* and CD8" cells were
upregulated at various time points in the German HO strain, and at day 14 in the American TL strain (Figure 6 and
Figure 7) 22 The TL susceptible strain expressed excessive immune responses at all time points. The
uncontrolled and excessive immune response in TL fish triggered irreversible inflammatory responses and tissue
damage, favouring parasite development and contributing to host susceptibility 22, Although understanding of
immune regulation has improved due to knowledge about immune response comparisons between susceptible and
resistant strains, it would be useful to investigate the distribution and kinetics of regulatory and pro-inflammatory
cells in both strains. Moreover, additional exploration of the cellular-based immune response implicated in WD
would be helpful in disease exploration and ultimate disease prevention.
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Figure 6. Flow cytometric analysis of HO and TL fish’s HK myeloid cells (a), IgM* B cells (b), CD8* T cells (c) and
CD8™ T cells (d) (22,
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Figure 7. Flow cytometric analysis of HO and TL fish’s spleen myeloid cells (a), IgM* B cells (b), CD8" T cells (c)
and CD8™ T cells (d) 22,

| 6. Immune Modulation in Response to Co-Infection
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Co-infection has detrimental effects on the host, notably influencing their vulnerability to other infectious agents, the
duration of the infection, and clinical progression [138]1139] For instance, the immune modulation of rainbow trout
exposed to M. cerebralis and Tetracapsuloides bryosalmonae was studied 149, The host initially infected with M.
cerebralis and then with T. bryosalmonae expressed greater numbers of parasites in both the posterior kidney and
cranial cartilage, which are the target sites of T. bryosalmonae and M. cerebralis, respectively. The relative
expression of the ribosomal protein L18 (RPL18) gene continued to rise, indicating parasitic activation. Moreover,
the mortality rate was high, and upregulation of SOCS1 and SOCS3 was reported in both organs (Figure 8 and

Figure 9).
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Figure 8. Relative gene expression of SOCS-1 (a) and SOCS-3 (b) in cranial cartilage during single infection and
co-infections 149,
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Figure 9. Relative gene expression of SOCS-1 (a) and SOCS-3 (b) in posterior kidneys during single and co-
infections 149,
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Likewise, elevated levels of JAK-1, and STAT-3 were also reported in both cranial cartilage and posterior kidneys

(Figure 10 and Figure 11). The gene expression of SOCS1 and SOCS3 was much higher compared to JAK and
STAT genes 149,
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Figure 10. Relative gene expression of JAK-1 (a) and STAT-3 (b) in cranial cartilages during single and co-
infections (149,
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Figure 11. Relative gene expression of JAK-1 (a) and STAT-3 (b) in posterior kidneys during single and co-
infections 149,

The synergistic effect established in the present case of co-infection was considered a result of T. bryosalmonae-
mediated immunosuppression due to the downregulation of immune genes [1401141](142][143] 'O the other hand, the
fish group infected with T. bryosalmonae first and then co-infected with M. cerebralis, expressed a smaller number
of both parasites. This was thought to occur due to the cross-reactivity between the sporogonic stages of both

parasites, which led to cross immunity 1441,
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In another study, Densmore et al. (2004) reported the higher bactericidal activity of already M. cerebralis-infected
rainbow trout against Y. ruckeri 143, The greater bactericidal activity was due to the proliferative response of the
immune system to M. cerebralis 128!, This represented an antagonistic interaction between the myxozoan parasite
and bacterial pathogen. In the case of co-infection with primary infection of M. cerebralis followed by T.
bryosalmonae, a synergistic effect was observed, resulting in more pronounced disease progression and mortality
rate. However, in co-infection with T. bryosalmonae following M. cerebralis, less severe outcomes of the disease
were noticed 1. Hence, it was indicated that the consequences of co-infections depend upon the interaction

between M. cerebralis and the co-infecting secondary pathogen.

| 7. Immune Modulation Due to Environmental Factors

As fish are poikilotherms, their physiology and body temperature are directly influenced by the ambient water
temperature (1471148 |mmune response dynamics are linearly influenced by variations in water temperature due to
changes in the season, salinity, microclimates, and fish migration 8. Thermal stress can suppress the host
immune system by altering the course of immune responses 48114911501 |n 5 previous study, disease occurrence
and the severity of lesions demonstrated a positive correlation with the increase in water temperature. This was
due to the negative impact of temperature on fish immunity 241, Another study investigated the contribution of
bacterial pathogens, water temperature, and gas saturation in the mortality of rainbow trout fingerlings exposed to
M. cerebralis. The increase in water temperature significantly increased mortality. Infection with Flavobacterium
psychrophilum was only a significant issue when additional stressors were present, and the effect of gas

supersaturation on mortality was negligible 2211,

Furthermore, a study found a positive correlation between temperature and both the prevalence and mortality of M.
cerebralis infection in rainbow trout 151, Rainbow trout showed the highest prevalence of infection and the most
serious lesions between 10 and 12 degrees Celsius. It is still not clear whether temperature-dependent illness
variation in myxozoans, specifically M. cerebralis infection, is solely caused by adaptations in the immune system
or by influences on the proliferation of myxozoans %2, |n addition, altitude can have an indirect impact on the
immune mechanism in fish. A study was conducted to find a correlation between altitude and water temperature. A
correlation between water temperature and altitude was identified. However, exceptions, such as low-altitude rivers
fed by glacial water with consistently low temperatures, and high-altitude rivers with warmer temperatures due to
surface water from shallow lakes, were observed. 1331, Based on the study mentioned earlier, it can be concluded
that altering altitude influences water temperature, which can have effects on immune regulation. Makkula et al.
(2007) observed that irradiated fish have decreased resistance to germs and parasites 124 The impact of
ultraviolet (UV) rays on the viability of the infective stage of M. cerebrealis in rainbow trout was evaluated. It was
concluded that UV irradiation is effective in eliminating the infectivity of TAMs in fish 1581 |ikewise, when juvenile
rainbow trout were exposed to UV-treated TAMs, they did not inhibit epidermis attachment and penetration;

however, they significantly hindered disease progression 18],

Stress is a further factor that has a major influence on the immune modulation of fish. Above all, corticosteroids and

pro-inflammatory cytokines are potential factors causing such immunomodulation 124158l |ncreasing steroids in
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sea bream infected with Ceratomyxa diplodae 152 and T. bryosalmonae-infected rainbow trout caused increased
susceptibility to their respective parasites 189, |n general, these studies suggested that stress has a negative
impact on M. cerebralis-infected salmonids, but more research can help the understanding of the actual role of

steroids in disease development.

Although studies have looked at the factors impacting morbidity and mortality, immune modulation in salmonids
due to these effectors is still insufficiently understood. Hence, more research is needed to determine how stress,
either external or internal, affects the immunological regulation of salmonids against M. cerebralis and other

myxozoan parasites.
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