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Glycogen synthase kinase-3 (GSK-3) is a central player in regulating mood behavior, cognitive functions, and
neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron

deterioration and disease pathogenesis.
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| 1. GSK-3—A Story of Two Isozymes

Glycogen synthase kinase-3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role
in a wide variety of cellular processes concerned with coordinating catabolic and anabolic pathways and regulating
cellular fate and cell growth. GSK-3 targeted phosphorylation typically inhibits the activity of the substrate, leading
to attenuation of the signaling pathway. GSK-3 thus functions as a suppressor of hormone/growth factor-induced
signaling cascades. For example, GSK-3 inhibits insulin signaling through the phosphorylation of glycogen
synthase and the insulin receptor substrates, IRS-1/IRS-2, where the former leads to inhibition of glycogen
synthesis, and the latter inhibits insulin receptor tyrosine kinase activity 2Bl GSK-3 also inhibits the canonical
Wnt signaling pathway through phosphorylation of B-catenin, which de-stabilizes the protein, leading to subsequent
degradation in the proteasome B8, |n addition, GSK-3 phosphorylates a variety of transcription factors including
Nuclear Factor of Activated T-Cells, NFAT [ heat shock factor-1 & cAMP response element binding protein,
CREB, &, and nuclear factor-kappa B, NF-kB 19, to inhibit gene expression. The unique properties of GSK-3 may
explain its involvement in such a wide variety of biological processes: Unlike most of protein kinases, GSK-3 is
active under “basal” conditions and is inhibited when cells are stimulated. The substrate recognition is also unusual
as it typically requires pre-phosphorylation of the substrate by another “priming kinase” L, This unique feature
adds additional levels of regulation because the ability of GSK to phosphorylate a substrate is conditionally
dependent upon the activation of the priming kinase, and that may be controlled by various factors including cell
type and cellular context. It should be noted, however, that unprimed substrates had been reported, such as -
catenin, or presenilin-1, as demonstrated by using a GSK-3 mutant that cannot interact with primed substrates 22
(13114 Finally, the versatility of GSK-3 also relies on its broad range of substrate, including a predicted number over
500 substrates and about 100 “physiological substrates” that are related to diverse cellular functions 2218 Another
important feature of GSK-3 is the existence of two isozymes, GSK-3a and GSK-3[3 coded by two different genes
(171 and a spliced variant of GSK-3B (GSK-3B2) containing a 13 amino acid insert has been described 18, The

GSK-3B2 variant is enriched in neurons and shows lower in vitro activity as compared to GSK-3p 19, GSK-3
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isozymes exhibit both similar and distinct functions. In some cases, the isozymes fulfil non-redundant physiological
functions, but in others, there is a possibility of compensation. The GSK-3 isozymes share 97% identity in their
catalytic domains, but there are significant differences at the N—and C-terminal domains 7. Notably, GSK-3a has
been largely overlooked in favor of studies with GSK-3[3, although roles for GSK-3a in cellular regulation and
diseases pathogenesis have recently been described. From the evolutionary perspective, the o and [ isozymes
split from a common precursor approximately at the time of emergence of vertebrates, and both genes are highly
conserved in fish, amphibians, reptiles, and mammals 29, An interesting finding is that the a gene is missing in
birds. Although the initial findings were based on the available draft genome of three species, namely, chickens,
domestic turkeys, and zebra-finches 2%, searching the updated genomic data confirms the general selective loss

of GSK-3a in the avian species (results from our laboratory).

The question of whether or not each GSK-3 isozyme possesses distinct functions has been addressed in many
intense studies. One possible cause of the differences between the isozymes could stem from their distinct
distribution in the brain, where GSK3a is especially abundant in the hippocampus, cerebral cortex, striatum, and
cerebellum, while GSK3p is expressed in nearly all brain regions 2. Another option could be that the differences
are due to their distinct phosphorylation pattern of substrates. Thus, specific deletion of each of the GSK3
isozymes in the brain produced a distinct substrate phosphorylation pattern 22, For example, phosphorylation of
Collapsin response mediated proteins, CRMP2 and CRMP4 at phosphorylation sites Thr 509, Thr 514 and Ser 518
was not detectable in cortex lacking GSK3[ but was normal in cortex lacking GSK-3a, and phosphorylation of tau
at Thr 231, Thr 235, and Se 396 was predominantly catalyzed by GSK-3p 19 although there may also be

redundant activity of the GSK-3 isozymes for other substrates such as B-catenin 22,

In the following section, we summarize the results obtained by genetic manipulations of the GSK-3 isozymes,
focusing on phenotypes and processes related to the brain and the nervous system. A significant difference
between the isozymes is clearly observed in embryonic development: while loss of GSK-3p is lethal, due to liver
degeneration and impaired heart development 231241251 GSK-3a null mice are viable [28. However, it is apparently
more complex to distinguish the roles played by the individual GSK-3 isozymes in adult neurons. The brains of
GSK-3a null mice are smaller, and the mice exhibit more aggressive behavior, reduced exploratory activity, and
reduced social interaction than normal controls 2. The GSK-3a null mice also have a shortened lifespan that is
associated with age-related pathology related to cardiac dysfunction, early onset of sarcopenia, and cellular
senescence 28, Selective loss of GSK-3a in neurons has also been shown to alter neuronal architecture and
behavior activity 22, With respect to pathological conditions, knock-down of GSK3a, but not GSK3pB, ameliorated
amyloid plaque loads and memory deficits in an Alzheimer’s disease (AD) mouse model B%. In contrast,
manipulation of GSK-3[ expression resulted in alterations in neuronal structure, mood behavior, and cognitive
functions. Selective loss of GSK-33 in the forebrain pyramidal neurons produced anxiolytic (reduced anxiety) and
pro-social effects Bl and loss of GSK-3B but not GSK-3a in GABAergic neurons, reversed gamma oscillation
deficits and cognitive dysfunction in an NMDA hypofunction model related to schizophrenia 2. Another “behavior”
study reported that GSK-3B heterozygous mice exhibit reduced exploratory and anxiety behavior 23134l The impact

of GSK-3B on neuronal structure was further demonstrated in cortical and hippocampal neurons where selective
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deletion of GSK-3B reduced dendritic spine stability and attenuated excitatory synaptic transmission 22, Finally,

overexpression of GSK3p reduced brain size in transgenic mice 38,

Conditional deletion of both GSK-3 isozymes further highlighted the prominent role of GSK-3 in regulating brain
architecture and behavior skills. Genetic elimination of both GSK-3 isozymes by shRNA reduced axon growth,
while localized inhibition of both isozymes at the distal axon resulted in axon elongation BZ. Conditional deletion of
GSK-3a and GSK-3B in astrocytes resulted in a larger brain with an increased number of astrocytes 28l These
animals showed aberrant anxiety and altered social behavior 28l Specific deletion of GSK-3 isozymes in new born
cortical neurons, disrupted dendritic orientation and radial migration (moving neurons to a different brain layer) in
all areas of the cortex and hippocampus 2. Finally, deletion of both GSK-3 isozymes in neuronal progenitors

resulted in a massive proliferation of cells and prevented progenitor differentiation 42,

The observation that birds lack GSK-3a provides an opportunity to distinguish the specific roles of GSK-3p.
Inhibition of brain GSK-3pB in a zebra finch model altered singing behavior and reduced neurogenesis in certain
regions of the ventricular zone 1. The results suggested that GSK-3a may be the major tau kinase in the adult
brain, as levels of phosphorylated tau (at GSK-3 phosphorylation site) in the bird’s brain were largely reduced as
compared to that of found in the mouse brain, a phenomenon that was also recapitulated in the brain of GSK-3a
KO mice 29, As high levels of tau phosphorylation was found in the bird’s embryo, it was further suggested that
GSK-3B may be the dominant tau kinase during embryonic development 29, Interestingly, overexpression of GSK-
3p resulted in increased tau phosphorylation in the adult mouse brain 28142 Thus, it seems that GSK-3a may be

the preferred tau kinase in adult; nevertheless, GSK-33 may become a “more dominant” tau kinase in pathological
conditions [26[42],

An interesting alternative model for the study of isozyme function is the phosphorylation-resistant GSK-3a/3 knock-
in mouse 22l In these mice, GSK-3 could not be inhibited (via serine phosphorylation) by an upstream kinase. The
results confirmed a dominant role for GSK-3p (but not GSK-3a) in regulating muscle glycogen synthase 2, as well
as in vivo tau phosphorylation by GSK-3 B8, These mice showed hyperactivity and mania, which recapitulated
symptoms of schizophrenia and manic phase in bipolar disorder #4]: in another study, they showed impairment of
neuronal precursor cell proliferation “2. The recent development of isozyme selective GSK-3 inhibitors also
provides an opportunity to distinguish differences in function between the two GSK-3 isozymes. The use of
BRDO705 to selectively inhibit GSK-3a (ICsy 0.066 uM vs. 0.5 uM of o or B isoform respectively 48)), revealed that
inhibition of GSK-3a corrects excessive protein synthesis and ameliorates the susceptibility to audiogenic seizures
in Fragile X syndrome (FXS) mice [47. Conversely, inhibition of GSK-3p by the selective inhibitor, BRD3731 (ICsq
0.015 pM vs. 0.215 pM of B or a isoform respectively [28)) reversed gamma oscillation and cognitive dysfunction in

a mouse model of schizophrenia 22,

| 2. GSK-3 in Neurodegeneration

GSK-3 is indeed a crucial player in the nervous system, and a significant factor that contributes to disease

pathogenesis. Earlier studies revealed lithium salt, a drug approved for treating psychiatric disorders, as a GSK-3
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inhibitor 2849 Thjs finding implicated GSK-3 as a central regulator of mood behavior and psychiatric disorders, a
notion that has since been supported by numerous studies. The current paradigm suggests that hyperactivity of
GSK-3 is a causative factor in progressive neurodegenerative and psychiatric conditions, while inhibition of GSK-3
may be therapeutic. Indeed, hyperactive GSK-3 was found in the AD brain, and overexpression of GSK-3 in vivo

induced AD pathology, cognitive deficits, and gliosis in a number of AD mice models [E8IE0IB1E2[53][54][55]

Additional studies have reported that alterations in GSK-3 activity (e.g., either excessive activation, or inhibition)
influence emotion, mood behavior, sociability skills, and schizophrenia-like behavior [BLE3144I56]571[58][59](60] A5 g
corollary, a reduction in GSK-3 activity reverses the severity of a number of diseases. For example, conditional
deletion of GSK-3 in the brain of AD transgenic mouse models (mice expressing APP mutant, tau mutant, or double
transgene expressing APP/PS1 mutants), was reported to reduce [-amyloid loads and levels of tau
phosphorylation, and to decrease the formation of neurofibrillary tangles BBl |ikewise, treatment with GSK-3
inhibitors has been shown to improve disease symptoms in animal models of AD, Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS). Yet, no efficacy was achieved in phase 2 clinical
trial for progressive supranuclear palsy (PSP) with the GSK-3 inhibitor tideglusib. Detailed descriptions of these
studies have been published elsewhere [62I[631[64][65][66][67]

It is evident from the accumulated data that GSK-3 plays a prominent role in regulating structural and metabolic
processes both in developing and adult neurons. In this review, we describe the role of GSK-3 in regulating
cytoskeleton organization, the mammalian target of rapamycin (mTOR) pathway, and in mitochondria, all of which
are components that link GSK-3 to neurodegeneration (see Figure 1). In addition, we provide an update of the field
of GSK-3 inhibitors.
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Figure 1. GSK-3 regulatory pathways in neurons. GSK-3 regulates microtubule (MT) stability and dynamics.
Phosphorylation of MT binding proteins (MAPs) by GSK-3 reduces their binding to MT, and GSK-3 phosphorylation
of kinesin 1 impairs anterograde and retrograde transport. GSK-3 activation of mMTORC1 inhibits autophagic and
lysosomal activity. GSK3 regulates mitochondrial energy metabolism and mitochondria-mediated cell death. GSK-3
destabilizes peroxisome proliferator-activated receptor y, PGCla, and inhibits its transcriptional activity,
phosphorylation of dynamin-related proteinl, DRP1, by GSK3 enhances mitochondria fission, and phosphorylation
of Voltage-dependent anion-selective channel 1, VADC1, and bcl-2 associated proteins, Bax, by GSK-3 enhances
their induced-apoptotic activity. Finally, GSK-3 impairs mitochondria and ER communication by disrupting proteins
associated with the microdomain, mitochondria-associated membranes, MAM.
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