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This entry deals with the productive (breed, diet, stress) and technological (aging, cooking) factors that affect fresh pork
and elaborates the quality of products by using proteomic tools. These technologies are a relevant approach in the meat
science field to decipher the underlying mechanisms and post-mortem changes in the muscle and biofluids proteome of
pigs because their study will allow better management of the outcomes such as meat quality variation and defects. In
general, these new developments in molecular techniques can help researchers to control and assess this quality through
biomarkers. Additionally, as food safety and pork product authentication/adulteration to avoid fraud can be evaluated with
these high-throughput proteomic tools. Overall, this review describes the current and emerging proteomics studies dealing
with raw pork and pork products from the farm to fork.
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| 1. Introduction

The global demand and industrial production of pork and pork products are increasing. According to the Food and
Agriculture Organization of the United Nations (FAO) statistics, worldwide swine production has increased steadily from
1961 to 2007, with Asia the continent with the highest production with around 50% of the total worldwide production.
Between 2007 and 2017, production increased significantly in Asia and remained as the highest swine producers (almost
60% of the world total), since China assumed most of the production with more than 3700 million pigs produced during
this time. Europe, with more than 25% of world production, is the second continent with the highest production. Germany,
Poland, and Spain are the major countries with a remarkable rate in swine production . Regarding pork consumption,
the Asian continent is the area of the world with the greatest increase, from 2.8 million tons in 1961 to 67.4 in 2013, mainly
related to China. For example, in 2013, pork demand in this country accounted for 80% of the Asian continent and around
50% worldwide (L.

From the above, it seems that the swine industry has significant interest in becoming more efficient and innovatively fitting
with the consumer demand. Consumers are now demanding higher standards for the welfare of pigs and pork quality.
Factors affecting the production system (breed, age/slaughter weight, sex, castration, and diet), pre-slaughter conditions
(fasting, transport, lairage and stunning), and post-mortem interventions (electrical stimulation of the carcasses, aging,
and storage conditions in terms of time/temperature, cooking, etc.) have an impact on pork eating quality, therefore, these
factors should be carefully monitored during the whole continuum of farm-to-fork, especially at the industrial level. The
relationship between animal welfare and pork quality has been detailed and rigorously researched from a proteomic point
of view . During the processing of meat, tenderness, color, and water holding capacity (WHC) traits are strongly
impacted. Indeed, tenderness, intramuscular fat, cooking loss, and sensory traits are the main qualities of pork meat,
which have been the most investigated and improved during the last decades. Currently, the meat research is focusing on
a deeper understanding of the conversion of muscle into meat. This process results from myriad interconnected pathways
including the enzymatic action of endogenous proteolytic enzymes of the muscle such as calpains; afterward, the impact
of pH decline and that of lysosomal enzymes (cathepsins) that break the supramolecular structure of sarcomere as well
as weakening the Z-discs, hence reducing the strength of the anchoring of the actomyosin complex and myofibrillar
proteins Bl In these stages, protein degradation plays an important role in the development of the pork quality traits (pH,
color, WHC, and tenderness), causing when uncontrolled, serious technological defects and economic losses to occur 141,

One of the main problems associated with poor pork quality is the PSE (pale, soft, exudative) meat defect. This defect can
be, for example, exacerbated by inadequate mixing with animals from different pens or batches raising fights and
aggressions, increasing their stress pre-slaughter, hence causing PSE meat . Stressed pigs are associated with a
higher concentration of lactate and rapid pH decline during rigor mortis, provoking PSE meat (€. Moreover, long journeys
could result in lower carcass pH at 45 min, leading to a high incidence of PSE meat . Along the same line, an
inadequate carcass cooling process could modify the metabolic processes and the extent of pH decline, hence leading to
PSE meat Bl In the case of PSE meat, changes in the sarcoplasmic and myofibrillar proteins are observed, and



specifically, a lower solubility and higher denaturation of the proteins are evidenced . This phenomenon could be the
result of several biological pathways such as fast post-mortem glycolysis in the muscle, which are specifically targeted by
activation of glycogen phosphorylase and phosphofructokinase, reducing the pH and protein denaturation and therefore
inducing the PSE defect B9 Consequently, pig stress has adverse consequences on fresh pork due to the impact on
the transformation of muscle into meat. Considering the above, this is a major problem to the industry due to the
economic losses, as this type of meat cannot be used for the elaboration of high-value cured meat products and other
products. In this sense, a prediction of PSE through protein modifications would be a powerful strategy 4, among other
emerging chemometric methods (29,

In the framework of high-throughput omics technologies, proteomics offers insights about the complex network of proteins
and pathways underlying variation in pork quality. The study of the post-mortem muscle proteome together with protein—
protein interactions, and post-translational modifications of proteins become a challenging task to deliver high-quality meat
products 2. In particular, the proteome is the result of a gene expression influenced by environmental and processing
conditions related to the functional quality characteristics of the meat 3. Gel-based proteomics and analytical
approaches based on mass spectrometry are increasingly being used. In the proteomic workflow, often the initial step is a
fraction of protein extracts separated using gel electrophoresis [one dimensional Sodium Dodecyl Sulfate Polyacrylamide
Gel Electrophoresis (SDS-PAGE) or two-dimensional gel electrophoresis (2-DE)] coupled to liquid chromatography tools
for identification. The large capacity and power of these technologies to study plant and animal products has been
demonstrated L4IASIIEIAT Afterward, the bottom-up approach is the most common strategy resulting from the extraction
of proteins and digestion by sequence-specific enzymes for later analysis by mass spectrometry 18! |t should be
highlighted that those post-translational modifications of the proteins and their interactions with other proteins or
macromolecules have a strong impact on pork tissues because of the change in the three-dimensional structure and
consequently of the cellular functions 2. Indeed, solubility, thermal stability, gelation, emulsifying, foaming, fat binging,
and water-binding are only a few of parameters that directly depend on the protein structure, resulting in its great
importance in food science 24, For all these reasons, food proteomics, also known as foodomics [, provide a great
opportunity in the quality and safety controls of pork and pork products (Eigure 1).
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Figure 1. Proteomic workflow in the search for protein biomarkers regarding pork quality.

| 2. Proteomic Perspective of Breeding and Rearing Practices

For consumers, the perception of muscle color, texture, and marbling are the main aspects that drive their choice. The
consumer’s first impression is strongly associated with the pork color at the point of sale whereas muscle firmness/texture
and marbling are used to predict the final eating quality. This complex network of sensory attributes defined by color, pH,
texture, water holding capacity, and marbling can be, for example, impacted by breed selection and rearing practices 22,
In general, meat quality traits are the result of genetic and environmental interactions. Therefore, livestock production
systems including feeding, housing conditions, genotypes, behavioral, and physiological responses are widely recognized
as the key factors driving pork quality. In recent years, different strategies aiming to improve the pork quality such as
breed selection, animal management, and feeding, and other aspects of pork processing have been considered. Some



recent studies in this context are briefly summarized in Table 1. Proteomics has mainly been employed to evaluate the
meat quality by searching protein biomarkers and defining the molecular pathways as reviewed by Schilling et al. &l The
great majority of proteomic experimental designs have been aimed to understand the underlying biological processes and

identify biomarkers for meat processing (231,
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Pork
quality

Effect of proteome

profiles on meat quality

(high-quality samples
against low-quality)

Meat quality: drip loss

Identification of
candidate genes

Meat quality: pH, color

traits, drip loss, water
holding capacity

Intramuscular
variation, neat quality
(color, drip loss and
tenderness) and their
relation to proteome

Water holding capacity

measured as
centrifugal exudate

(High drip vs. Low drip)

across post-mortem
aging on different
phenotypes

Intramuscular fat
content

Muscle fiber type
distribution in
semimembranosus
and semitendinosus
muscles

LD

LD

LD

LD

LD

SM, ST
separated
into dark
and light
portion

Tandem mass
tag labelling
and mass
spectrometry

Isotope coded
protein
labelling
followed by
selected
reaction
monitoring
analysis

2DE + MALDI-
TOF

Label-free
quantification +
LC-MS/MS

2-D DIGE
followed by
MALDI-
TOF/TOF and
nano-ESI LC-
MS/MS.

Tandem mass
tag labelling
and parallel
reaction
monitoring
analysis

LC-MS/MS

Lower degree of glycolysis in high-

quality compared to low-quality meat.

The levels of oxidative stress and 21
apoptosis were low in high-quality

meat.

The enrichment analysis resulted in 10
pathways. The most relevant pathways
were sphingolipid metabolism and
glycolysis/gluconeogenesis in relation (48]
to drip loss. It allowed proposing

genetic markers and candidate genes

for drip loss.

Proteins associated with ultimate pH,
lightness, drip, thawing and cooking
loss were related to the glycolytic
pathway, phosphate transfer, or fiber
type composition. In the case of [42)
thawing loss, the proteins were related

to denaturation of myofibrils or lipid

content. Redness involved proteins

were enriched in post-mortem oxidative
activity.

Glycolysis enzymes (enolase 3,
ALDOA, LDHA, PGM1, and TPI1) were
highly abundant in the medial and
posterior region. GAPDH and
myoglobin were overexpressed in the
medial region

Discriminatory proteins identified

include metabolic enzymes, stress

response, transport and structural

proteins. Twenty-five proteins were 7
used to discriminate between high drips

and lower drips with accuracy higher

than 72%.

ALDH1B1, OTX2, ANXA6 and Zfp512

were proposed as candidate (58]
biomarkers associated with

intramuscular fat deposition and fat
biosynthesis in Laiwu pigs.

According to fiber type (oxidative vs.
glycolytic) distribution, differentially
expressed muscle proteins was 51
detected resulting in intramuscular

variations of pork quality.



Effect of feeding

The categories “muscle contraction”

regime on and “structural constituents of
intramuscular fat i cytoskeleton” were the most
) . iTRAQ and LC- e o {49]
increase. Comparison LD MS/MS significantly up-regulated proteins in
between normal muscle from reduced protein diets and
protein diet vs. up-regulated proteins involved in the
reduced protein diet. regulation of energy metabolism.
o Parallel . . .
Authentication of pork i Five peptides from myosin were
reaction
in meat mixtures Meat L screened and then used for pork 54]
X ) monitoring X i
(chicken, sheep and mixtures detection by PRM of Orbitrap MS. The
mass
beef) LOD in mixed meat can be up to 0.5%.
spectrometry
Adulteration. Search Troponin | (Tnl) has been characterized
. i for species-specific as a potential thermally stable and
Mislabeling K 2-DE and X e
biomarker of Meat species-specific biomarker of 53
- ) MALDI- ) ) ) 53]
mammalian muscle mixtures mammalian muscle tissues in raw meat
) ) TOF/TOF
tissues in raw meat (beef, pork, lamb, and horse) and meat
and meat products. products.
To discriminate fresh 2-DE and Twenty-two proteins were
and freeze-thawed LD MALDI- discrimination markers for fresh orand 58
pork TOF/TOF freeze-thawed pork.
The expression changes in colon were
Prevention and control found in proteins involved in cell death
of Salmonella Intestinal and survival, tissue morphology or
Food typhimurium in pigs sections TRAQ molecular transport at the early stages 59]
i
safety along a time course of  (ileum and and tissue regeneration at 6 days post-
1, 2, and 6 days post colon) infection. A higher number of changes

infection

in protein expression was quantified in
ileum at 2 days post-infection

SM = semimembranosus muscle ST = semitendinosus muscle.

| 4. Advances in Proteomics for Pork Products

Nowadays, pork is an important part of the diet of many cultures because of its great versatility and thee abundant foods
that can be manufactured from sausage to a dry-cured ham. Indeed, in recent years, most pork meat is sold as ham,
bacon, and sausages than fresh pork. Further processing of pork should be considered in great detail to achieve high
quality and palatability of products. The quality is associated, as evidenced above, with protein structure and lipid and
protein oxidative reactions occurring during industrial processing and storage. Therefore, proteomics emerges as a
relevant field, giving rise to new knowledge and understanding of the mechanisms. Table 3 displays the recent studies
regarding the use of proteomics/peptidomics to evaluate the quality of pork products.

Table 3. Recent studies regarding the use of proteomics/peptidomics to evaluate the quality of pork products.

Proteomic

Product Objective Main Findings Ref

Technology



Cooked pork
products
(cooked ham
and emulsion
sausages)

Parma dry-
cured ham

Dry-Cured
Ham

Dry-cured
ham (Jinhua)

Dry-cured
ham

Cooked pork

Pork soup

Dry-cured
ham

Effect of cooking
process on protein
modifications

Effect of pressure
treatment before
salting stage

Effect of Proteolysis
indices and
adhesiveness on
proteins degradation

Use of high pressure
and ultrasound to
correct textural defect
in dry-cured ham

Sensory attributes
(formation
mechanisms of
bitterness and
adhesiveness) in raw,
normal and defective
hams

Peptide oxidation in
PDO Teruel dry-cured
ham

Effect of cooking on
peptidomic profile and
digestibility

Protein modifications
in presence of salt
(treated 2%) and
without salt (control)

Antioxidant peptides
from Xuanwei (XHP)
and Jinhua (JHP)
ham

2-DE and
MALDI-
TOF/TOF

2D-PAGE and

LC-ESI-MS/MS

2-DE and
MALDI-
TOF/TOF

LC-MS/MS

nESI-LC—-
MS/MS

SDS-PAGE and

MALDI-
TOF/TOF

i-TRAQ

nano-LC-MS/MS
and quadrupole
ion trap Orbitrap

spectrometer

The protein aggregation systems of cooked
hams and emulsion sausages reflect the heat
processing conditions. The disulfide bridges and
additional covalent interprotein links determine
the final product.

Specific proteins were found differentially
abundant in exudates from pressed versus
unpressed hams. The pressure caused a faster
loosening of the myofibrillar structure with the
release of specific groups of proteins

Myosin-1, a-actin and myosin-4 proteins were
the main changing due to proteolysis.

The high-pressure conditions caused a greater
level of proteolysis displaying that actin was
differentially degraded, unlike myosin.

Fragments of the major myofibrillar protein were
abundantly caused by ultrasound heating.

Defective hams showed more proteolytic index
that normal ham. Creatine kinase, myosin, a-
actinin and troponin-T showed the most intense
response to bitterness and adhesiveness of dry-
cured ham. Myosin was proposed as a suitable
biomarker to monitor bitterness and
adhesiveness

KDEAAKPKGPIKGVAKK, KKLRPGSGGEK,
KNTDKWSECAR and ISIDEGKVL were
proposed as peptide biomarkers of processing
conditions.

The cooking process led to a reduction in
digestibility. Peptides sequenced from pepsin-
digested samples under lower degrees of
doneness disappeared as the temperature
increased. The trypsin cleavages appeared
more consistent among different degrees of
cooking

Proteolytic index of salted samples was 5%
higher than the control and 112 differentially
abundant proteins were detected.

XHP showed higher antioxidant ability than JHP.
The oligopeptides with less than 1000 Da and
high antioxidant activity were detected.

[60](61]

[62]

[63]64]

[66]

671

[69]



) Twenty proteins were identified and quantified
Dry-Cured Degradation of nLC-MS/MS 71

. . suggesting intense degradation during
Ham sarcoplasmic proteins and SDS-PAGE .
processing.

| 5. Conclusions and Future Prospects

Proteomics is an emerging technology for the rapid and sensitive identification of biomarkers aiming to assess the
potential quality of pork products and the impact of food processing technologies. Genetic and rearing conditions
influencing technological and sensory meat quality provoke different biochemical and molecular reactions that are
regulated by several proteins and pathways including metabolic enzymes. Furthermore, pork quality determined by
tenderness, color, drip loss, and intramuscular fat is conducted by structural and sarcoplasmic proteins. In this regard,
proteins play a key role in the textural and sensory quality of pork fresh, showing the importance of the study of muscle
proteome in pork. The most relevant quality traits were assessed by gel and mass spectrometry analysis. Gel-based
proteomics are widely used for the search of protein biomarkers of these quality traits. Even the most sensitive gel-based
methods such as protein labeling with fluorescent dyes as fluorescence difference gel electrophoresis (DIGE) were
considered. However, gel-free alternatives such as Sequential Window Acquisition of All Theoretical Mass Spectra
(SWATH-MS), Liquid chromatography—mass spectrometry/mass spectrometry (LC-MS/MS), or Isobaric tags for relative
and absolute quantitation (iTRAQ) should be employed to enhance the efficiency of our quest for protein biomarkers and
further validate previous results. Other technical improvements in pork processing were assessed from a proteomic
perspective, providing an insight into protein modifications. Peptidomic profiles could further offer an overall overview of
the protein digestibility and bioavailability that determine the effect of protein fraction on human health. In the framework of
data analysis, we expect that statistics will play a great role in future proteomics, especially in handling the huge data
produced by different proteomics methods. Regarding this, we expect that there is great interest in combining different
omics techniques in the framework of multi-omics to study the interplay between different macromolecules in relation to
the pork phenome. Indeed, phenomics or high-throughput phenotyping is becoming a reality in livestock production
systems including pork, and we expect that this global approach will play an important role in the next years and decades.



