

Gelatin-Based Hydrogels

Subjects: **Engineering, Chemical**

Contributor: Robson Andreazza , Amaia Morales , Simone Pieniz , Jalel Labidi

Hydrogels have become one of the potential polymers used with great performance for many issues and can be promoted as biomaterials with highly innovative characteristics and different uses. Gelatin is obtained from collagen, a co-product of the meat industry. Thus, converting wastes such as cartilage, bones, and skins into gelatin would give them added value. Gelatin-based hydrogels have been shown to be useful for different applications with important and innovative characteristics.

hydrogel

gelatin

sustainability

remediation

1. Introduction

Hydrogels are characterized as three-dimensional cross-linked polymeric networks that can be produced with the most variable compounds and with the most variable uses [1]. In the last decade, hydrogels have been used in many applications and with high technical and economic viability which include biomedical and environmental areas.

Gelatin-based hydrogels are one kind of hydrogel in which gelatin is used as the cross-linked polymer and give the gel characteristics such as structure and texture. Many studies have promoted this kind of hydrogel for biomedical uses with promising and important characteristics such as tissue engineering [2][3] and/or drug delivery [4][5] with a high economic impact on society, medicine, and environmental purposes with high applicability.

The market for gelatin in 2020 rose to about USD 3.18 billion and is further expected to reach USD 4.08 billion by 2024 as forecasted in the same report [6]. The market of gelatin in 2013 was the highest in the food and beverages sector (28%), followed by nutraceuticals (25.8%) and pharmaceuticals (21%), while their use in the cosmetic industry was only 5.5% [7]. Along with the advancements in drug delivery, it caused the development of new recipients as novel dosage forms to fulfill specific functions which directly or indirectly influence the extent and or rate of drug release. This enhances the development of new and modified recipient sources that continue to emerge for better drug delivery performance [8].

Several studies have shown the high potential of hydrogels as green and renewable materials, with highly efficient and promising uses [1][9]. Gelatin-based hydrogels have several advantages due to their biocompatibility, biodegradability, and nontoxic features [10]. Furthermore, gelatin is a natural protein-derived material, and it has been used for the synthesis of medical hydrogels because of its non-immunogenicity and capacity for enhancing cell adhesion apart from its excellent biocompatibility [11].

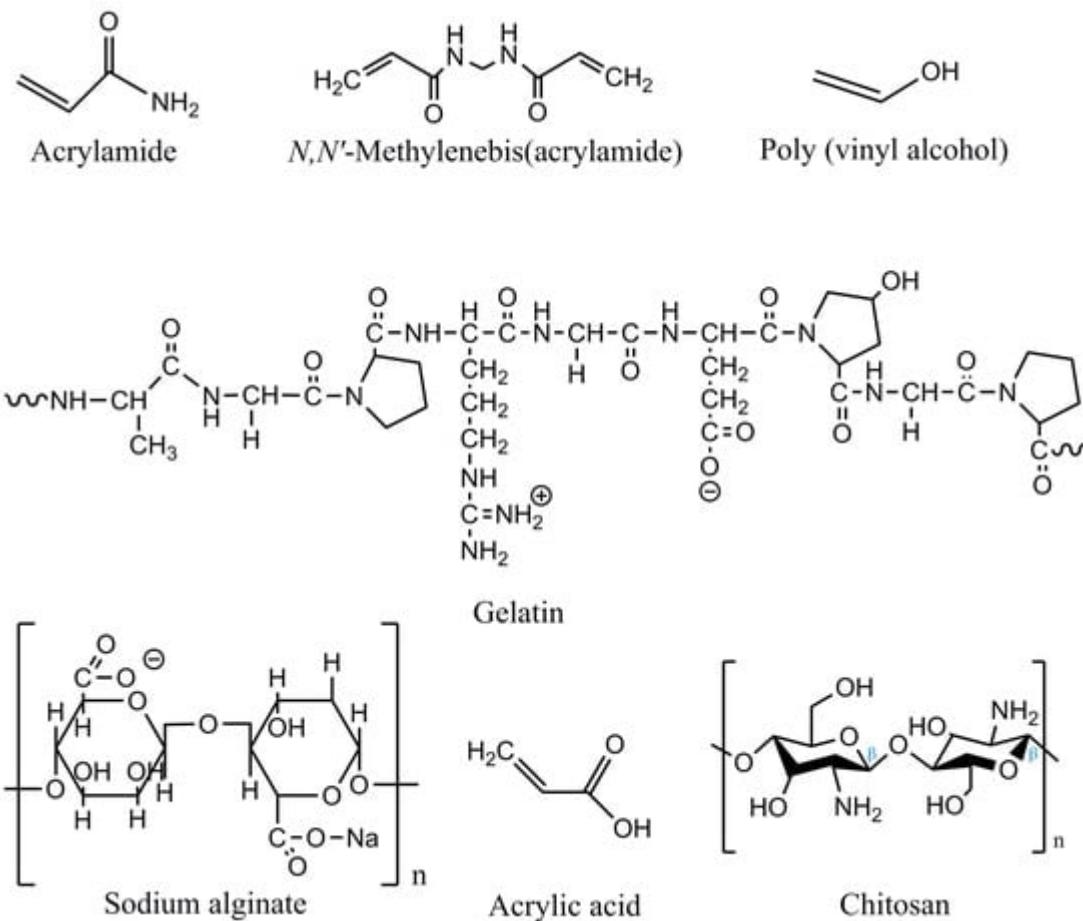
Environmental problems such as pollution and contamination of water and soil have increased over the years of industrialization, mining, and the use of natural resources. Bioremediation and remediation processes come to assuage the contamination and promote environmental sustainability. In this way, hydrogels have a high potential for remediation with a substantial capacity for the adsorption of a wide range of pollutants such as toxic metals [12][13][14][15], organic compounds [16][17], dyes [18][19][20], and others.

2. Gelatin-Based Hydrogels

Traditional gelatin is produced from animal origin, and it has been made from bones, cartilage, tendons, ligaments, and skin of animals such as cattle, pigs, fish, or chickens. As aforementioned, gelatin is derived from the partial hydrolysis of collagen protein presented in the previous sources [21]. Thus, due to the process of obtaining it, it may also be referred to as hydrolyzed collagen, hydrolyzed gelatin, or collagen peptide after it has undergone hydrolysis. After this process, the final product is colorless and soluble.

Gelatin is one of the most used ingredients with non-toxic and biodegradable characteristics in food and non-food industries for many purposes: for promoting gelation, stabilizing, thickening, emulsifying, and film forming [21]. Biodegradability is today an important issue since the sustainability of each product needs to exist; otherwise, the product might have problems with its future use because sanitary treatment is expensive and delimitation of space is a large problem for cities and governments. Even after obtaining the gelatin or the desired product from it, it has been demonstrated to have biodegradable characteristics, and it can contribute to producing new materials with high biodegradability potential inside the human organism [22] and in the environment [23][24].

Gelatin is used for giving consistency and viscosity to the hydrogels and, thanks to its aforementioned biodegradable and renewable nature, it can be an important source of sustainable hydrogels. Nowadays, the use of gelatin for the synthesis of hydrogels for multiple purposes depends on its structure and texture characteristics, and the applications range from the biomedical or biotechnological areas [2][3][25][26] to the most variable water and waste treatments [15][16][27][28][29]. Thus, gelatin-based hydrogels are versatile materials, which makes them very interesting. Some useful aspects of gelatin-based hydrogels employed for all the applications together with some others such as alimentary or environmental ones are displayed in **Table 1**.


Table 1. Different purposes, applicability areas, and potential uses of gelatin-based hydrogels.

Hydrogel	Purpose	Field	Potential Use	Reference
Poly(vinyl) alcohol-based	Mechanical and physical resistance	Biomedical	Economically high	[30]
Antioxidant peptides	Protective for enzyme	Biotechnology	Economically high for food industry	[26]
Gelatin nanoparticle	Tissue engineering, cell culture	Biotechnology	Economically high	[2]

Hydrogel	Purpose	Field	Potential Use	Reference
Chitosan	Drug delivery	Biomedical	Economically	[5]
Dopamine grafted/1,4-phenylenebisboronic acid and graphene oxide	Tissue adhesives, wound dressings, and wearable devices	Biomedical	Economically high	[11]
Cellulose incorporation	Chromium adsorption	Environmental	Pollution control and waste treatment	[27]
Cellulose microcrystals incorporation	Drug delivery	Biomedical	Economically	[31]
Oxidized alginate	Cartilage tissue engineering	Biomedical	Economically and healthy high	[32]
Carrageenan and potassium sulfate	Foods, materials, and other fields	Multiple uses	Economically and industrially	[10]

As shown in **Table 1**, the wide applicability of hydrogels has been studied. In the biomedical field, for instance, purposes such as tissue engineering [31][25], cell culture scaffolding for bacterial growth and further human uses [33], dental pulp regeneration [34], capsules for drug delivery [4], and the treatment of myocardial infarction [35] have been investigated. Gelatin hydrogels are usually permeable to nutrients and oxygen, which enhance the survival rate of cells and their biological functions [33]. So, hydrogels with different compositions combining gelatin with other polymers could be useful for biomedical applications.

Gelatin is a protein that can easily biodegrade in the environment but has some stability limitations at high temperatures since once it has been dissolved, long durations at temperatures above 40 °C can promote protein denaturation. Moreover, gelatin is soluble in water, and this can also be a problem when synthesizing neat gelatin materials. As shown in **Figure 1**, gelatin is usually made from repeating units of glycine-X-Y. The high amount of the amino acids proline (12%), hydroxyproline (10%), and hydroxylysine (0.5%) make gelatin particularly special [36]. Depending on its origin, the content of proline and hydroxyproline might vary; in fact, fish gelatin is known for having a lower concentration of these amino acids compared to that coming from mammals. This affects negatively the gelling ability of fish gelatin, leading to a decrease in the gelation and melting temperatures together with a worsening of its mechanical properties, among others [37]. Thus, in order to synthesize more stable and resistant gelatin-based hydrogels, this biopolymer has been combined with many other polymers such as polyvinyl alcohol [30], alginate dialdehyde, alginate dialdehyde-gelatin reinforced with bioactive glass nanoparticles [3], dialdehyde carboxymethyl cellulose-dextrin [25], graphene oxide and laponite [35], collagen [34], chitosan [5], dopamine grafted, 1,4-phenylenebisboronic acid and graphene oxide [11], and oxidized alginate (OA) reinforced by silicon carbide nanoparticles (SiC NPs) and cross-linked with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) [38]. **Figure 1** shows the chemical structure of different compounds used for the synthesis of gelatin-based hydrogels.

Figure 1. Chemical structure of some of the compounds that enable cross-linking with gelatin for the synthesis of gelatin-based hydrogels.

References

1. Morales, A.; Labidi, J.; Gullón, P. Effect of the Formulation Parameters on the Absorption Capacity of Smart Lignin-Hydrogels. *Eur. Polym. J.* 2020, 129, 109631.
2. Bertsch, P.; Andrée, L.; Besheli, N.H.; Leeuwenburgh, S.C.G. Colloidal Hydrogels Made of Gelatin Nanoparticles Exhibit Fast Stress Relaxation at Strains Relevant for Cell Activity. *Acta Biomater.* 2022, 138, 124–132.
3. Monavari, M.; Homaeigohar, S.; Fuentes-Chandía, M.; Nawaz, Q.; Monavari, M.; Venkatraman, A.; Boccaccini, A.R. 3D Printing of Alginate Dialdehyde-Gelatin (ADA-GEL) Hydrogels Incorporating Phytotherapeutic Icariin Loaded Mesoporous SiO₂-CaO Nanoparticles for Bone Tissue Engineering. *Mater. Sci. Eng. C* 2021, 131, 112470.
4. Khamrai, M.; Banerjee, S.L.; Paul, S.; Samanta, S.; Kundu, P.P. Curcumin Entrapped Gelatin/Ionically Modified Bacterial Cellulose Based Self-Healable Hydrogel Film: An Eco-Friendly

Sustainable Synthesis Method of Wound Healing Patch. *Int. J. Biol. Macromol.* 2019, 122, 940–953.

5. Omer, A.M.; Sadik, W.A.-A.; El-Demerdash, A.-G.M.; Hassan, H.S. Formulation of PH-Sensitive Aminated Chitosan-Gelatin Crosslinked Hydrogel for Oral Drug Delivery. *J. Saudi Chem. Soc.* 2021, 25, 101384.

6. Research, G.V. Gelatin Market Size Expected to Reach \$4.08 Billion by 2024. Grand View Research, Inc. 2016. Available online: <https://www.grandviewresearch.com/press-release/global-gelatin-market> (accessed on 14 November 2022).

7. Global Industry Analysts Gelatin Growing Applications in Food, Pharmaceutical and Nutritional Solutions to Drive Demand for Gelatin. Available online: <https://www.marketresearch.com/Global-Industry-Analysts-v1039/Gelatin-31468046/> (accessed on 14 November 2022).

8. Mohamed, F.A.A.; Roberts, M.; Seton, L.; Ford, J.L.; Levina, M.; Rajabi-Siahboomi, A.R. The Effect of HPMC Particle Size on the Drug Release Rate and the Percolation Threshold in Extended-Release Mini-Tablets. *Drug Dev. Ind. Pharm.* 2015, 41, 70–78.

9. Thakur, A.; Kaur, H. Synthetic Chemistry of Cellulose Hydrogels—A Review. *Mater. Today Proc.* 2021, 48, 1431–1438.

10. Chen, H.; Wu, D.; Ma, W.; Wu, C.; Tian, Y.; Wang, S.; Du, M. Strong Fish Gelatin Hydrogels Enhanced by Carrageenan and Potassium Sulfate. *Food Hydrocoll.* 2021, 119, 106841.

11. Han, K.; Bai, Q.; Wu, W.; Sun, N.; Cui, N.; Lu, T. Gelatin-Based Adhesive Hydrogel with Self-Healing, Hemostasis, and Electrical Conductivity. *Int. J. Biol. Macromol.* 2021, 183, 2142–2151.

12. Mahmoud, M.E.; Abouelanwar, M.E.; Mahmoud, S.E.M.; Salam, M.A. Doping Starch-Gelatin Mixed Hydrogels with Magnetic Spinel @molybdenum Oxide as a Highly Efficient Nanocomposite for Removal of Lead (II) Ions. *J. Environ. Chem. Eng.* 2021, 9, 106682.

13. Pal, P.; Syed, S.S.; Banat, F. Gelatin-Bentonite Composite as Reusable Adsorbent for the Removal of Lead from Aqueous Solutions: Kinetic and Equilibrium Studies. *J. Water Process Eng.* 2017, 20, 40–50.

14. Tanan, W.; Panpinit, S.; Saengsuwan, S. Comparison of Microwave-Assisted and Thermal-Heated Synthesis of P(HEMA-Co-AM)/PVA Interpenetrating Polymer Network (IPN) Hydrogels for Pb(II) Removal from Aqueous Solution: Characterization, Adsorption and Kinetic Study. *Eur. Polym. J.* 2021, 143, 110193.

15. Yang, W.; Wang, J.; Han, Y.; Luo, X.; Tang, W.; Yue, T.; Li, Z. Robust MOF Film of Self-Rearranged UiO-66-NO₂ Anchored on Gelatin Hydrogel via Simple Thermal-Treatment for Efficient Pb(II) Removal in Water and Apple Juice. *Food Control* 2021, 130, 108409.

16. Alsohaimi, I.H.; El-Aassar, M.R.; Elzain, A.A.; Alshammari, M.S.; Ali, A.S.M. Development of Activated Carbon-Impregnated Alginate* β -Cyclodextrin/Gelatin Beads for Highly Performance Sorption of 2,4-Dichlorophenol from Wastewater. *J. Mater. Res. Technol.* 2020, 9, 5144–5153.

17. Shamsuddin, R.M.; Verbeek, C.J.R.; Lay, M.C. Settling of Bentonite Particles in Gelatin Solutions for Stickwater Treatment. *Procedia Eng.* 2016, 148, 194–200.

18. Mir, A.A.; Amooey, A.A.; Ghasemi, S. Adsorption of Direct Yellow 12 from Aqueous Solutions by an Iron Oxide-Gelatin Nanoadsorbent; Kinetic, Isotherm and Mechanism Analysis. *J. Clean. Prod.* 2018, 170, 570–580.

19. Priya; Sharma, A.K.; Kaith, B.S.; Tanwar, V.; Bhatia, J.K.; Sharma, N.; Bajaj, S.; Panchal, S. RSM-CCD Optimized Sodium Alginate/Gelatin Based ZnS-Nanocomposite Hydrogel for the Effective Removal of Biebrich Scarlet and Crystal Violet Dyes. *Int. J. Biol. Macromol.* 2019, 129, 214–226.

20. Ndagijimana, P.; Liu, X.; Xu, Q.; Lai, D.; Wang, G.; Pan, B.; Wang, Y. Cassava Flour Extracts Solution to Induce Gelatin Cross-Linked Activated Carbon-Graphene Oxide Composites: The Adsorption Performance of Dyes from Aqueous Media. *Environ. Adv.* 2021, 5, 100079.

21. Ahmed, M.A.; Al-Kahtani, H.A.; Jaswir, I.; AbuTarboush, H.; Ismail, E.A. Extraction and Characterization of Gelatin from Camel Skin (Potential Halal Gelatin) and Production of Gelatin Nanoparticles. *Saudi J. Biol. Sci.* 2020, 27, 1596–1601.

22. Kaur, K.; Jindal, R.; Jindal, D. Controlled Release of Vitamin B1 and Evaluation of Biodegradation Studies of Chitosan and Gelatin Based Hydrogels. *Int. J. Biol. Macromol.* 2020, 146, 987–999.

23. Chiou, B.S.; Avena-Bustillos, R.J.; Bechtel, P.J.; Jafri, H.; Narayan, R.; Imam, S.H.; Glenn, G.M.; Orts, W.J. Cold Water Fish Gelatin Films: Effects of Cross-Linking on Thermal, Mechanical, Barrier, and Biodegradation Properties. *Eur. Polym. J.* 2008, 44, 3748–3753.

24. Martucci, J.F.; Ruseckaite, R.A. Biodegradation of Three-Layer Laminate Films Based on Gelatin under Indoor Soil Conditions. *Polym. Degrad. Stab.* 2009, 94, 1307–1313.

25. Sharma, A.K.; Kaith, B.S.; Shree, B. Borax Mediated Synthesis of a Biocompatible Self-Healing Hydrogel Using Dialdehyde Carboxymethyl Cellulose-Dextrin and Gelatin. *React. Funct. Polym.* 2021, 166, 104977.

26. Zhang, Y.; Li, C.; Geary, T.; Jardim, A.; He, S.; Simpson, B.K. Cold Setting of Gelatin–Antioxidant Peptides Composite Hydrogels Using a New Psychrophilic Recombinant Transglutaminase (RTGase). *Food Hydrocoll.* 2022, 122, 107116.

27. Marciano, J.S.; Ferreira, R.R.; de Souza, A.G.; Barbosa, R.F.S.; de Moura Junior, A.J.; Rosa, D.S. Biodegradable Gelatin Composite Hydrogels Filled with Cellulose for Chromium (VI) Adsorption from Contaminated Water. *Int. J. Biol. Macromol.* 2021, 181, 112–124.

28. Seera, S.D.K.; Kundu, D.; Gami, P.; Naik, P.K.; Banerjee, T. Synthesis and Characterization of Xylan-Gelatin Cross-Linked Reusable Hydrogel for the Adsorption of Methylene Blue. *Carbohydr. Polym.* 2021, 256, 117520.

29. Chaudhary, J.; Thakur, S.; Mamba, G.; Prateek; Gupta, R.K.; Thakur, V.K. Hydrogel of Gelatin in the Presence of Graphite for the Adsorption of Dye: Towards the Concept for Water Purification. *J. Environ. Chem. Eng.* 2021, 9, 104762.

30. Manish, V.; Arockiarajan, A.; Tamadapu, G. Influence of Water Content on the Mechanical Behavior of Gelatin Based Hydrogels: Synthesis, Characterization, and Modeling. *Int. J. Solids Struct.* 2021, 233, 111219.

31. Boughriba, S.; Souissi, N.; Nasri, R.; Nasri, M.; Li, S. PH Sensitive Composite Hydrogels Based on Gelatin and Reinforced with Cellulose Microcrystals: In Depth Physicochemical and Microstructural Analyses for Controlled Release of Vitamin B2. *Mater. Today Commun.* 2021, 27, 102334.

32. Kreller, T.; Distler, T.; Heid, S.; Gerth, S.; Detsch, R.; Boccaccini, A.R. Physico-Chemical Modification of Gelatine for the Improvement of 3D Printability of Oxidized Alginate-Gelatine Hydrogels towards Cartilage Tissue Engineering. *Mater. Des.* 2021, 208, 109877.

33. Saotome, T.; Shimada, N.; Matsuno, K.; Nakamura, K.; Tabata, Y. Gelatin Hydrogel Nonwoven Fabrics of a Cell Culture Scaffold to Formulate 3-Dimensional Cell Constructs. *Regen. Ther.* 2021, 18, 418–429.

34. Leite, M.L.; Soares, D.G.; Anovazzi, G.; Anselmi, C.; Hebling, J.; de Souza Costa, C.A. Fibronectin-Loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. *J. Endod.* 2021, 47, 1110–1117.

35. Cheng, Y.H.; Cheng, S.J.; Chen, H.H.; Hsu, W.C. Development of Injectable Graphene Oxide/Laponite/Gelatin Hydrogel Containing Wharton's Jelly Mesenchymal Stem Cells for Treatment of Oxidative Stress-Damaged Cardiomyocytes. *Colloids Surf. B Biointerfaces* 2022, 209, 112150.

36. Hjelmgaard, T.; Svendsen, J.Ø.; Köhler, B.; Pawelzyk, P.; Lybye, D.; Schmücker, C.M.; Reiter, P.; Reihmann, M.; Thorsen, P.A. Gelatin-Tannin-Based Greener Binder Technology for Stone Shot and Stone Wool Materials: A Detailed Study. *ACS Omega* 2021, 6, 33874–33882.

37. Derkach, S.R.; Voron'ko, N.G.; Kuchina, Y.A.; Kolotova, D.S. Modified Fish Gelatin as an Alternative to Mammalian Gelatin in Modern Food Technologies. *Polymers* 2020, 12, 3051.

38. Ghanbari, M.; Salavati-Niasari, M.; Mohandes, F.; Firouzi, Z. Modified Silicon Carbide NPs Reinforced Nanocomposite Hydrogels Based on Alginate-Gelatin by with High Mechanical Properties for Tissue Engineering. *Arab. J. Chem.* 2022, 15, 103520.