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In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere

vanishing) vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime.

Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.
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1. Types of Congruences

Congruences generated by nowhere vanishing timelike, null, or spacelike vector fields are called timelike, null, or

spacelike respectively.

A congruence is called a geodesic congruence if it admits a tangent vector field  with vanishing covariant derivative,

.

2. Relation with Vector Fields

The integral curves of the vector field are a family of non-intersecting parameterized curves which fill up the spacetime.

The congruence consists of the curves themselves, without reference to a particular parameterization. Many distinct

vector fields can give rise to the same congruence of curves, since if  is a nowhere vanishing scalar function, then 

and  give rise to the same congruence.

However, in a Lorentzian manifold, we have a metric tensor, which picks out a preferred vector field among the vector

fields which are everywhere parallel to a given timelike or spacelike vector field, namely the field of tangent vectors to the

curves. These are respectively timelike or spacelike unit vector fields.

3. Physical Interpretation

In general relativity, a timelike congruence in a four-dimensional Lorentzian manifold can be interpreted as a family of

world lines of certain ideal observers in our spacetime. In particular, a timelike geodesic congruence can be interpreted as

a family of free-falling test particles.

Null congruences are also important, particularly null geodesic congruences, which can be interpreted as a family of freely

propagating light rays.

Warning: the world line of a pulse of light moving in a fiber optic cable would not in general be a null geodesic, and light in

the very early universe (the radiation-dominated epoch) was not freely propagating. The world line of a radar pulse sent

from Earth past the Sun to Venus would however be modeled as a null geodesic arc. In dimensions other than four, the

relationship between null geodesics and "light" no longer holds: If "light" is defined as the solution to the Laplacian wave

equation, then the propagator has both null and time-like components in odd space-time dimensions, and is no longer a

pure Dirac delta function in even space-time dimensions greater than four.

4. Kinematical Description

Describing the mutual motion of the test particles in a null geodesic congruence in a spacetime such as the Schwarzschild

vacuum or FRW dust is a very important problem in general relativity. It is solved by defining certain kinematical quantities
which completely describe how the integral curves in a congruence may converge (diverge) or twist about one another.
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It should be stressed that the kinematical decomposition we are about to describe is pure mathematics valid for any

Lorentzian manifold. However, the physical interpretation in terms of test particles and tidal accelerations (for timelike

geodesic congruences) or pencils of light rays (for null geodesic congruences) is valid only for general relativity (similar

interpretations may be valid in closely related theories).

4.1. The Kinematical Decomposition of a Timelike Congruence

Consider the timelike congruence generated by some timelike unit vector field X, which we should think of as a first order

linear partial differential operator. Then the components of our vector field are now scalar functions given in tensor

notation by writing , where f is an arbitrary smooth function. The acceleration vector is the covariant

derivative ; we can write its components in tensor notation as

Next, observe that the equation

means that the term in parentheses at left is the transverse part of . This orthogonality relation holds only when X is a

timelike unit vector of a Lorentzian Manifold. It does not hold in more general setting. Write

for the projection tensor which projects tensors into their transverse parts; for example, the transverse part of a vector is

the part orthogonal to . This tensor can be seen as the metric tensor of the hypersurface whose tangent vectors are

orthogonal to X. Thus we have shown that

Next, we decompose this into its symmetric and antisymmetric parts,

Here,

are known as the expansion tensor and vorticity tensor respectively.

Because these tensors live in the spatial hyperplane elements orthogonal to , we may think of them as three-
dimensional second rank tensors. This can be expressed more rigorously using the notion of Fermi Derivative. Therefore,

we can decompose the expansion tensor into its traceless part plus a trace part. Writing the trace as , we have

Because the vorticity tensor is antisymmetric, its diagonal components vanish, so it is automatically traceless (and we can

replace it with a three-dimensional vector, although we shall not do this). Therefore, we now have

This is the desired kinematical decomposition. In the case of a timelike geodesic congruence, the last term vanishes

identically.

The expansion scalar, shear tensor ( ), and vorticity tensor of a timelike geodesic congruence have the following

intuitive meaning:

1. the expansion scalar represents the fractional rate at which the volume of a small initially spherical cloud of test

particles changes with respect to proper time of the particle at the center of the cloud,

2. the shear tensor represents any tendency of the initial sphere to become distorted into an ellipsoidal shape,

3. the vorticity tensor represents any tendency of the initial sphere to rotate; the vorticity vanishes if and only if the world

lines in the congruence are everywhere orthogonal to the spatial hypersurfaces in some foliation of the spacetime, in

which case, for a suitable coordinate chart, each hyperslice can be considered as a surface of 'constant time'.
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See the citations and links below for justification of these claims.

4.2. Curvature and Timelike Congruences

By the Ricci identity (which is often used as the definition of the Riemann tensor), we can write

By plugging the kinematical decomposition into the left hand side, we can establish relations between the curvature tensor

and the kinematical behavior of timelike congruences (geodesic or not). These relations can be used in two ways, both

very important:

1. we can (in principle) experimentally determine the curvature tensor of a spacetime from detailed observations of the

kinematical behavior of any timelike congruence (geodesic or not),

2. we can obtain evolution equations for the pieces of the kinematical decomposition (expansion scalar, shear tensor, and

vorticity tensor) which exhibit direct curvature coupling.

In the famous slogan of John Archibald Wheeler,

Spacetime tells matter how to move; matter tells spacetime how to curve.

We now see how to precisely quantify the first part of this assertion; the Einstein field equation quantifies the second part.

In particular, according to the Bel decomposition of the Riemann tensor, taken with respect to our timelike unit vector field,

the electrogravitic tensor (or tidal tensor) is defined by

The Ricci identity now gives

Plugging in the kinematical decomposition we can eventually obtain

Here, overdots denote differentiation with respect to proper time, counted off along our timelike congruence (i.e. we take

the covariant derivative with respect to the vector field X). This can be regarded as a description of how one can

determine the tidal tensor from observations of a single timelike congruence.

4.3. Evolution Equations

In this section, we turn to the problem of obtaining evolution equations (also called propagation equations or propagation
formulae).

It will be convenient to write the acceleration vector as  and also to set

Now from the Ricci identity for the tidal tensor we have

But

so we have

By plugging in the definition of  and taking respectively the diagonal part, the traceless symmetric part, and the

antisymmetric part of this equation, we obtain the desired evolution equations for the expansion scalar, the shear tensor,

and the vorticity tensor.
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Consider first the easier case when the acceleration vector vanishes. Then (observing that the projection tensor can be

used to lower indices of purely spatial quantities), we have

or

By elementary linear algebra, it is easily verified that if  are respectively three dimensional symmetric and

antisymmetric linear operators, then  is symmetric while  is antisymmetric, so by lowering an index,

the corresponding combinations in parentheses above are symmetric and antisymmetric respectively. Therefore, taking

the trace gives Raychaudhuri's equation (for timelike geodesics):

Taking the traceless symmetric part gives

and taking the antisymmetric part gives

Here,

are quadratic invariants which are never negative, so that  are well-defined real invariants. Te trace of the tidal tensor

can also be written

It is sometimes called the Raychaudhuri scalar; needless to say, it vanishes identically in the case of a vacuum solution.

4.4. See Also
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