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This entry gives a brief introduction to microgrids, their operations, and further, a review of different energy

management approaches. In a microgrid control strategy, an energy management system (EMS) is the key

component to maintain the balance between energy resources (CG, DG, ESS, and EVs) and loads available while

contributing the profit to utility. This article classifies the methodologies used for EMS based on the structure,

control, and technique used.
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1. Introduction

Over the last few decades, with an increasing population, the world has gone through an exponential consumption

of energy which has led to the depletion of conventional resources like coal, crude oil, and natural gas. The

exploitation of these resources has a severe impact on the environment with an increase in greenhouse gases .

To mitigate these effects, a policy has been adopted by different countries to introduce non-conventional/renewable

sources to support the fields of electrification and transportation. In electrification, the existing power grid uses

conventional sources for generation and lacks power quality. The poor power quality of supply leads to load

shedding and blackouts, thereby interrupting the day-to-day activities of the consumers. The conventional grid uses

one-third of the total generation fuel to convert into electricity and, with an eight percent loss in transmission lines

of the generated electricity, is used to meet the peak demand that also has a five percent probability of occurring,

with reduced reliability . Conventional generation does not utilize the heat produced by itself for any application.

These drawbacks of the conventional grid could be compensated with penetration of renewable sources at local

areas or distributed generation (DG) there by reducing the transmission losses and maximum utilization of the

output including heat generated . Integration of dispatchable energy sources like wind and PV introduces the

problem of intermittent power generation as they generally depend on climatic and meteorological conditions. A

hybrid energy system consisting of storage elements and renewable energy sources is used for the continuous

supply of power. The future power grid needs to be intelligent to maintain a reliable supply of economical and

sustainable power for consumers . To overcome the existing challenges in the grid, a smart grid needs to

be adopted which controls the complex process of power exchange and plans as well for the growing energy

demand. The future grid requires the support of communication technologies and local microgrids (MG) for efficient

control of the system. The integration of renewable energy resources at the load side requires a two-way flow of

power and data with the capability of adapting to management applications that can leverage the technology .
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During a fault condition, the local microgrid isolates itself from the main grid, creating a standalone/islanding mode

of supply to the consumers . This feature is known as plug and play, which allows the local generation to

meet the demand by balancing the energy available. The microgrid consists of a microgrid control center (MGCC)

and local controllers (LCs) to balance the energy demand. The microgrid takes the inputs from forecasted

parameters (weather, generation, and market prices) to meet the uncertain load demand and also participates in

the energy market. The MGCC is supported by communication technologies and equipped with processing

algorithms to overcome the challenges in the generation–demand balance . The energy management in

microgrids controls the power supply of storage elements, demand response, and local controllers/local generation

sources. Figure 1 shows a typical structure of a microgrid.

Figure 1. Structure of a typical microgrid.

The contributions of this paper are shown as below: This paper provides a brief introduction about the architecture

of microgrids, different classifications in microgrids, components of a microgrid, communication technologies used,

standards available for the implementation, and auxiliary services required. This paper provides a review of the

recent analysis of the different energy management strategies consisting of classical, heuristic, and intelligent

algorithms. The article analyzes each approach and its applications in that methodology. The paper addressed

applications in energy management which include forecasting, demand response, data handling, and the control

structure. This article provides insight on areas in which the scope of research and their contribution to energy

management is in the nascent stage.

The energy management strategies proposed for the microgrid in the paper are structured into six sections.

Section 1 is the introduction to microgrids and energy management. Section 2 provides a brief overview of

microgrid elements, architecture, classification, and communication. Section 3 gives an overview of different control

structures in energy management. Section 4 provides reviews on different numerical algorithms used in energy

management strategies in microgrids based on the classification, control, and methods of approach. Remarks on

each paper for different controls of the EMS application are given. Section 5 discusses the support infrastructure of

microgrids for their efficient operation. Section 6 provides the conclusion of the paper.
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2. Overview of Microgrid

A microgrid is a small or medium distribution system comprised of smart infrastructure capable of maintaining

equilibrium in demand–supply while providing security, autonomy, reliability, and resilience. Sourced distributed

generations (DGs) like photovoltaics (PV), wind turbines (WT), microturbine (MT), fuel cells (FC), and energy

storage units (ESU) are expected to deliver electricity without interference from the main grid. This high penetration

of DGs can cause challenges in the performance of power system stability in large areas. To minimize the risks, the

concept of microgrids is proposed . A microgrid is a small-scale low- or medium-level voltage distribution

system consisting of distributed energy resources (DERs), intermittent storage, communication, protection, and

control units that operate in coordination with each other to supply reliable electricity to end-users .

Conventional generation (CG), such as coal-based thermal power plants, hydro power plants, wind-generation

farms, and large-scale solar and nuclear power plants, are centralized to supply electricity for long distances. A

decentralized generation is energy generated by the end-users by using small-scale energy resources . Local

generation when compared with the conventional power system reduces the transmission losses and the cost

associated with it. The generation could be from 1 kW to a few 100 MW; the generation units are mostly used to

support the peak load of the demand. Distributed generation sources consist of both renewable and non-renewable

sources, i.e., wind generators, PV panels, small hydro power plants, and diesel generators . Combined heat and

power (CHP) is where heating is added along with electricity in the application. The sources that are being used in

CHP systems are Stirling engines, internal combustion engines, and micro-turbines (MT) using biogas, hydrogen,

and natural gas . CHP technology stores excess allowing optimum performance, thereby attaining efficiency of

more than 80%, to that of about 35% for centralized power plants . Table 1 shows characteristics of distributed

generation sources.

Table 1. Characteristics of distributed generation sources.

Energy storage is a device that is capable of converting the electrical energy to a storable form and converting it

back to electricity when it is needed. Based on the form of stored energy, there are four main categories for energy

storage technologies: mechanical energy storage (MES), thermal energy storage (TES), chemical energy storage
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Characteristics Solar Wind Micro-Hydro Diesel CHP

Availability Location-
Based

Location-Based
Location-

Based
Anywhere Source-Based

Output DC AC AC AC AC

Carbon
emission Nil Nil Nil High Source-Based

Interface Converter Converter + IG/SG IG/SG Generator Generator

Flow control MPPT/DC
Voltage

MPPT/Torque and
Pitch

Controllable Controllable
AVR and
Governor



Energy Management System in Microgrids | Encyclopedia.pub

https://encyclopedia.pub/entry/14393 4/15

(CES), and electrical energy storage (EES). The key components for the working of MG EMS are the energy

storage units, which regulate the supply–demand balance during the operation of DGs. In , a conclusion is

drawn that a system with several micro sources is modeled to support an island mode where storage systems are

needed to maintain the balance of the intermittent sources. The energy storage devices that are included in

microgrid systems that provide continuous power supply are batteries, flywheels, and supercapacitors . In terms

of the current economy, batteries are less expensive and have a high negative environmental effect compared to

other storage devices. Storage in fuel cells is also another option that converts the fuel into electricity through a

chemical process. These fuel cells require oxygen and hydrogen for continuous supply without discharge. A variety

of fuels available for the fuel cell are propane, natural gas, anaerobic digester gas, methanol, and diesel hydrogen

, while hydrogen has become prominent in recent years for its clean and safe operation. Table 2 shows

commonly used energy storage and their characteristics.

Table 2. Different energy storage systems in microgrids.

Loads can be categorized as residential, commercial, industrial, and others (agriculture and public offices) from the

statistical data of feeder consumption in the distribution system. Measurement-based and component-based

approaches are considered for load model identification . The measurement-based approach needs the

measured data from the smart meters or measuring devices which derives into load model structure. The capturing

of data for load characteristics needs to be composed of different environmental conditions. The data obtained

from the smart devices are used to form the load model structure as static, ZIP (constant impedance-resistive

components or heating, constant current-street lighting, and constant power motors), and exponential . Then,

[26][27][28]
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Characteristics Charge/Discharge
Rate (MW)

Discharge
Duration

Response
Time

Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Environmental
Impact

Service
(Years)

Efficiency
(%)

Battery 0–40
msec–
hours

msec
10–
250

70–
300

High 5 70–90

Flywheel 0.001–0.005
msec–1

h
msec

0.005–
5

500–
10,000

Low 20 75–95

Supercapacitor 0.002–0.25
msec–15

min
instantaneous 5–130

400–
1500

Low >10 90–95

Fuel Cell 0.001–50 sec-day+ m sec
800–

10,000
500–
1000

Moderate >15 20–90

CES 0.1–300
Hour–
day+

min 3–60 - Low 15 40–90

SMES 0.1–10
msec–10

sec
instantaneous 0.5–5

500–
2000

Low 10 >95

Pumped
storage 0.1–5000

Hour–
day+

Sec–min
0.5–
1.5

- Low 25 >85

[31]
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the structure is estimated and validated with field measurements by correcting the errors using intelligent detection

techniques (artificial intelligence and pattern detection). The component-based approach aggregates the load

model by combining the load consumption of individual components, acquired by the information or rating of each

load in the load composition. This approach needs three different datasets: (i) individual component load model, (ii)

percentage of each component’s load consumption, and (iii) share of the load contribution from each load class—

residential, commercial, and industrial. The individual component model parameters are obtained from experiments

. Figure 2 has shown different loads classification is based on identification and control.

Figure 2. Loads classification is based on identification and control.

3. Energy Management System Control Structure

According to the International Electro-Technical Commission (IEC) standard application program about power

systems, IEC-61,970 defines an energy management system as a “computer system comprising a software

platform providing basic support services and a set of applications providing the functionality needed for the

effective operation of electrical generation and transmission facilities to assure adequate security of energy supply

at minimum cost” .

Energy management in microgrids is a complex automated system that is aimed at optimal scheduling of available

resources (CG, DGs, ESS) to meet the day-to-day demand while considering the meteorological data and market

price. There are three control approaches in energy management of the microgrid which are: (i) centralized, (ii)

decentralized, and (iii) distributed.

[34][35][36][37]
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With an increase in the geographical area, the system control in centralized mode becomes difficult due to the

delay or lag in the communication, which leads to delay control. This process is not feasible as well as not

economical; hence, we choose the decentralized mode of control. In decentralized control, each unit has its own

local controller that works in an autonomous state where it receives the voltage and frequency data . Here, the

decentralized control does not provide the all the information to the other local controllers, but rather exchanges the

global information to make the decisions of the overall system. The exchange of information is allowed in a few

controllers to take action spontaneously in a state of emergency. A third approach, obtained with a combination of

the above two control approaches, is the distributed control . This mode of control scheme provides control to

both centralized as well to decentralized property up to a certain degree of control. In this control scheme, each

local controller unit uses the local information like voltage and frequency from the neighbors, which helps to obtain

a global solution by the central controller while using the two-way communication link by the local controllers.

Characteristics of different types of controls in the energy management system are presented in Table 3 .

Table 3. Characteristics of different types of controls in the energy management system.

[39]

[40]

  Centralized Decentralized Distributed

Information
Accessed

Microgrids pass
information to the central

controller

Independent control is
provided with data from the

other local controllers

Interoperability and data
exchange between every

device

Communication
Information

Synchronized information
from the device to the

central controller

Information among local
controllers is asynchronized

Communication is both
locally and globally

asynchronized

Function in real-
time Complex Acceptable Easy

Feature of Plug
and play

The central controller
needs to be instructed

Can be accessed by central
controller

Available by the peers

Expenditure More Less Less

Structure of Grid Centrally controlled Locally controlled
Both centrally and locally

controlled

Tolerance during
fault Less tolerance capability

One router fault—tolerated
N router fault—expensive

N router fault—tolerated,
Possible self-healing

feature

Infrastructure Needs suggestion
integrating DERs

Integration is modular and
possible

No change while
integration

Size (Number of
nodes) Less

IPv4-2
IPv6-2

>2

Final Nodes No identification Unique identification IP Global unique identifier

12

128
128
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Load balance acts as a constraint between generation and demand. Load demand balance problems can be

categorized in two ways: the supply-side and the demand-side . Supply-side balance can be obtained by using

the hierarchical control scheme for the economic scheduling for consumption by the end-users. Load control can

be categorized as: (i) controllable loads, which are the loads that are managed according to the price, and (ii)

shiftable loads, also known as deferrable loads, such as charging of electric vehicles, washing machines, dryers,

which can provide scheduling flexibility for demand response.

4. Numerical Methodologies of EMS

Different EMS techniques are differentiated according to the numerical methods used for controlling the energy

management system. These methods are broadly classified into three categories: (i) classical methods, (ii)

metaheuristic methods, and (iii) intelligent methods.

Classical methods are the mathematical programming or classical programming methods that choose certain

variables to maximize or minimize a given function subject to a given set of constraints. Branch and bound are the

classic components that are used for solving the classical method approach to find the optimal solution in an

iterative process without integer constraints. Classical methods use both linear and nonlinear optimization models

to solve the problem. The classical methods are divided into certainty- and uncertainty-constrained problems.

An optimal solution can be found in the distinct search space as used in combinatorial optimization. Metaheuristic

method is an iterative method that is unlikely to guarantee a global optimum solution due to its convergence

properties. This can be compensated with finding the mean of the solutions; the use of Monte Carlo simulation

improves the convergence of the solution. Stochastic implementation of optimization is dependent on the random

variables created . The metaheuristic approach works on two concepts, namely intensification and

diversification. Intensification is searching a local area to find an optimal solution when we know that solution could

be found in the prescribed region. The diversification process is searching the space on a global scale with no

limits in the search pattern using the randomly generated variables, while randomization increases the diversity of

solution when the search space exceeds the local optima. To find the global optimal or the best solution, both the

  Centralized Decentralized Distributed

Operation
Flexibility Very less Available Very much needed

Bandwidth &
Latencies Low and high Both are great High and low

QoS Not allowed Allowed Inherent

Connectivity EPA (Physical) TCP/IP (Physical) TCP/IP (Virtual)

Safety measures Less Available High

Individuality No No Possible

[41]
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intensification and diversification processes need to be in proper balance, which increases the rate of convergence

in the algorithm . A few metaheuristic algorithms are particle swarm optimization (PSO), genetic

algorithm (GA), modified PSO (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II), enhanced velocity

differential evolutionary PSO (EVDEPSO), priority PSO, multi-voxel pattern analysis (MVPA), grey wolf optimization

(GWO), artificial bee colony (ABC), adaptive differential evaluation (ADE), crow search algorithm (CSA), rule-based

bat optimization (BO), gravitational search algorithm (GSA), alternating direction method of multipliers (ADMM)

using modified firefly algorithm (MFA), teaching–learning optimization (TLA), social spider algorithm (SSO), and

whale optimization algorithm (WOA). Table 4 provides a critical review of the metaheuristic methods used in EMS.

Table 4. A review of metaheuristic methods used in EMS.

[43][44][45][46][47]

Ref
No Method Power

Sources Ev Dr Grid/IslandEms Remarks

NSGA-II
PV, WT,

BT
    G/I C

A multi-objective optimization problem is proposed
to maximize the economy. Intelligent power
marketing is adapted to improve the economic
dispatch of the microgrid.

NSGA-II
PV, WT,

BT
*   G/I C

This paper establishes an integral objective
function considering the demand response and
user satisfaction constraints, which has an effect
on the economy and operation of the system with
the DR strategy.

PSO
PV, MT,
BT, TES

    G/I C

An optimal energy planning is proposed for the
recently modeled energy hub. An efficient
microgrid structure is discussed along with
technical and economic prospects with
optimization.

CVCPSO
PV, WT,

DE
*   G/I C

Minimizing the operating costs while maximizing
the utility benefit using the CVCPSO algorithm,
which yielded the Pareto-optimal set for each
objective, and the fuzzy-clustering technique was
adopted to find the best compromise solution.

MPVA
PV, WT,
MT, BT

    G/I C
A sports metaheuristic algorithm to minimize the
overall running cost of MG while studying four
different MG scenarios.

GWO PV, WT     G/I C

A sine cosine optimizer is used to optimally
participate in the trading of energy, i.e., selling or
buying the power while bringing the capital cost of
the microgrid.

ABC PV, WT,
DE, BT,

FC

*   G/I C An EMS application of the V2G economic dispatch
problem is optimized in the MG while converting

[48]
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Ref
No Method Power

Sources Ev Dr Grid/IslandEms Remarks

the multi-objective problem to a single objective
using the judgment matrix methodology.

EBC
PV, WT,
MT, BT

    G/I C

Different TOUs are evaluated to minimize MG
operational costs and to analyze the efficiency of a
typical distribution system, considering all relevant
technical constraints.

ADE DG, BT     G C

An ADE-based optimization is proposed for the DC
microgrid modeling the active power sources
under real-time pricing to minimize the total
operating cost.

MOPSO
PV, MT,
BT, TES

  * G/I C
EMS application is proposed to reduce the carbon
dioxide emissions and payback period of the
microgrid structure.

EVDEPSO PV, BT * * G/I C

A day-ahead planning schedule is determined to
improve the energy market trading while managing
the resources available. Includes the electric
vehicles participating in the energy market, G2V
and V2G.

Rule base
BO

PV, WT,
MT, FC,

BT
  * G C

A bat algorithm is used to optimize the MG
operation by forecasting the load power and
uncertainties in RES using probabilistic methods.
The weight factors are taken for tuning.

CSA
PV, FC,
DE, HY

  * G/I C

The Pareto front is considered to investigate the
operating cost, solar power uncertainty, carbon
emission, and the cost of the parameters.
Hydrogen fuel is considered in reducing operating
costs.

GSA
PV, WT,

BT
* * G/I C

Optimization of the overall cost considering the
carbon emission and weekly generation
scheduling for the small dispatchable systems.

ADMM-
MFA

PV, WT,
MT, FC,

BT
  * G/I C

EMS is modeled for the MG to optimize the
electricity price by considering the load profile, PV
irradiance, and market prices with certain
constraints.

TLA
PV, WT,
MT, FC

* * G/I C

Hybrid MG reducing the operating cost considering
thermal power recovery and hydrogen generation;
V2G technology helps to convert the PEVs into
active storage.

SSO PV, WT,
DE, FC

  * I C Optimal sizing of the renewable energy sources
with conventional sources to minimize the cost of

[55]
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PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; TES—Thermal energy storage; DE—Diesel; FC—Fuel

Cell; HY—Hydro; C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.

Neuro-fuzzy is a combination of fuzzy approach and neural network, where fuzzy inference system (FIS) is

adjusted by the data provided to NN learning rules. Improved speed, accuracy, and strong learning skills along with

simple execution are the advantages of this approach .
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