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The term Big Data (BD) refers to massive datasets deriving from multiple sources such as people, sensors, or machines.

Big Data applications have attracted ever-increasing attention in several scientific and business domains. Biomedicine,

transportation, entertainment, and aerospace are only a few examples of sectors which are increasingly dependent on

applications, where knowledge is extracted from huge volumes of heterogeneous data. 
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1. Introduction

Big Data Analytics has gained a lot of popularity lately in both business and academic domains (e.g., biomedicine,

manufacturing, aviation, entertainment, and transportation) and can reveal previously unknown patterns and correlations

in data . Traditional definitions of Big Data (BD) refer to its key features as “3Vs”, namely Volume, Velocity, and Variety.

There are also many other models (e.g., “4V”, “5V”, and “8V” models) encompassing Veracity, Value, Viability, Validity,

Volatility or other BD features .

The ever-increasing demand for the acquisition, analysis, and storage of large volumes of data has rendered BD an

indispensable part of modern transportation systems . The aerospace industry is related to the research, manufacturing,

design, operation and maintenance of aircrafts, spacecrafts, Unmanned Aerial Vehicles (UAVs), missiles, space launch

vehicles, etc. . Aerospace can greatly benefit from BD-based methodologies in various ways  such as:

Optimizing air traffic and reducing congestion;

Reducing maintenance-related costs;

Minimization of flight delays;

Improving aircraft/spacecraft design;

Supporting space missions;

Improving operational efficiency;

Advanced monitoring of aircrafts/spacecrafts;

Advanced processing of spaceborne/airborne data;

Increasing safety.

2. Big Data in Aviation Technology

The first category of analyzed publications in the context of this research revolved around how BD can benefit aircraft

design and manufacturing processes, how it is used for effectively monitoring flight/aircraft/safety parameters, as well as

how it can improve aircraft health monitoring systems.

2.1. Aircraft Design/Manufacturing

Aircraft manufacturing encompasses complex designs and processes which are directly related to BD collected in

different stages of manufacturing. Wang et al.  proposed a novel architecture for industrial BD processing which was

capable of batch data processing, low latency control, hierarchical industrial BD management, stream data processing,
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etc. This architecture integrated edge computing, which helped in reducing data transmission/decreasing latency, and a

feedback loop, which was particularly useful in aviation manufacturing processes such as workshop monitoring and

machine tool control. Experimental testing of the proposed architecture was performed by means of a digital aviation

manufacturing workshop simulation. The experiments indicated real-time BD processing capabilities, high effectiveness,

and high suitability for the aviation manufacturing domain. In  Crespino et al. described a novel framework for detecting

machine faults in aviation manufacturing, aiming to ensure that the product quality is not compromised. The so-called

Model-based Big Data Analytics as-a-Service (MBDAaaS) framework was comprised of three main stages. In the first

stage, a json file was produced which contained specifications for the declarative model as regards the main objectives

and indicators. The second stage encompassed the definition of the procedural model which described how the analytics

would be executed/parallelized based on the requirements of the first stage. Finally, the third stage produced the

deployment model which mapped each operation/tool to the corresponding services. This framework was tested on an

aviation machine fault prediction use case, proving its applicability in the BD pipeline of aviation manufacturing

companies.

Industrial BDintegration and sharing (IBDIS) is of vital importance for the efficiency of BD analysis in manufacturing

systems. Wang et al.  proposed a framework for IBDIS based on fog computing, where integration and sharing were

split into different subtasks carried out by fog clients. This framework ensured high security for raw data, respected data

privacy, and helped in importantly decreasing the network traffic. The authors highlighted the effectiveness of the

proposed framework in aircraft manufacturing and presented a specific case study in an aircraft manufacturing group

located in China. In this, BD from two different companies of the manufacturing groups should be shared and integrated.

These data were relevant to the manufacturing of a plane positioner and included both data regarding the position of

certain key points on the wing as well as data relevant to the execution time of each particular manufacturing step.

The combination of BD and the Digital Twin (DT) as described by diverse scientific publications can be of particular

interest for aviation manufacturing. Singh et al.  proposed a novel information management framework for Aircraft

Manufacturing based on the DT, which helped in addressing BD-related challenges. The framework was comprised of four

main layers, namely the physical layer, the data acquisition layer, the model layer, and the data model layer. These layers

were continuously interacting with each other and were also updated regularly, thus facilitating the handling of large

volumes of data throughout the DT lifecycle. The effectiveness of this framework was presented by the authors through a

case study involving the aircraft wing fatigue crack growth and propagation in an aircraft manufacturing company. In

another publication based on DT, Liang et al.  proposed a methodology for field displacement perception for component

DTs, which can be implemented in precision manufacturing scenarios, such as those of aircraft manufacturing. The

methodology combined the matrix completion theory with online displacement monitoring. The generated displacement

model was based on the observed points as well as on the simulation BD. The method was experimentally tested,

achieving high efficiency and high precision, yielding a max error smaller than 0.094 mm and a median error smaller than

0.054 mm in an average timeframe smaller than 0.48 s.

2.2. Monitoring of Flight/Aircraft/Safety Parameters

Air turbulence is likely to cause a major concern to aviation companies, since it can lead to the discomfort of passengers,

injuries, as well as aircraft structural damage or even accidents in extreme cases. Air turbulence can be measured by

utilizing measurements of the Vertical Overload, the Eddy Dissipation Rate (EDR), or the Derived Equivalent Gust Velocity

(DEVG). Huang et al.  proposed a new methodology to estimate EDR based on Quick Access Recorder (QAR) BD.

The authors tested their methodology on QAR BD collected by Boeing and Airbus aircrafts in China from 2016 to 2018.

The EDR measurements using the aforementioned methodology were visualized spatially and could be obtained with a

reasonable time cost. The methodology was compared to traditional air turbulence measurement methodologies and was

proven to provide a reasonable indicator when calculating the air turbulence risks during a flight, while also being less

sensitive than the traditional methodologies in cases of measurements deriving from different aircrafts. QAR BD was also

utilized in other scientific publications which can be found below. In , Wang et al. made use of QAR BD from the Civil

Aviation Administration Of China (CAAC) to identify potential problems deriving from the take-off pitch angle. A very small

take-off pitch angle of an aircraft may result in the aircraft overrunning the runway and may also reduce its capability of

avoiding obstacles at a low altitude. The authors utilized QAR BD from 54 different airlines and made a comparison

between the industry-wide data and the data of each individual airline. The data analyzed included the take-off pitch

angle, the correlative speed at rotation as well as the liftoff speed. In a use case outlined by the authors, the take-off pitch

angle of the A321 aircraft of a specific airline was found to be too small. Right after that, the airline was informed about the

problem and immediately took the necessary steps to avoid potential future events of a very low take-off pitch angle. In

, Xie et al. utilized QAR BD from Chinese airlines during 2018 for detecting unstable approach events. The authors

performed spatio-temporal pattern analysis as well as exploratory correlation analysis. The Pearson correlation coefficient
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was calculated to explore the correlation of unstable approach events and other factors such as the wind grade, bad

weather conditions, and altitude. The experimental results indicated different spatio-temporal distribution characteristics of

Airbus and Boeing aircrafts in cases of unstable approach events as well as a clear correlation existing between bad

weather conditions, wind grade, altitude, and unstable approach cases.

The mandatory use of the Traffic Alert and Collision Avoidance System (TCAS) is of paramount importance for the safe

and effective management of air traffic. Such systems have significantly reduced the risk of mid-air collisions. Schafer et

al.  analyzed TCAS BD in order to extract useful insights about the usage characteristics and the efficiency of such

systems. Around 250 billion aircraft transponder messages collected from over 125,000 aircrafts from the OpenSky

network were analyzed. The authors noted that 89.5% of aircraft equipped with Automatic Dependent Surveillance–

Broadcast (ADS–B) had an operational TCAS. The authors also observed that alerts by TCAS were frequent in parallel

approaches of aircraft, in conflicts between standard arrival and departure procedures, as well as in cases of top-of-climb

and beginning-of-descent of aircrafts. Olive et al. , also used BD from the OpenSky network in their work. More

specifically, the authors utilized BD from the OpenSky network regarding aircrafts broadcasting the “7700” emergency

code related to general emergencies over a period of two years and combined this data with crowdsourced sources such

as social networks. The main goal of this combination was to extract a semi-labelled dataset containing trajectories as

well as to train Machine Learning (ML) models which will be able to provide explanations about potential emergencies

based on trajectory data, when no other data are available.

An important parameter for evaluating an aircraft’s performance is the engine thrust. In , Deiler compared three

different models for determining thrust with limited ap riori information about the characteristics of a flight’s performance,

utilizing BD from a database with operational flights of Airbus A320 neo aircraft. More specifically, a linear, a local-linear,

and a nonlinear model were compared in representing an engine’s thrust. The non-linear model was found to be the most

accurate of the three and it was extended by means of temperature correction, resulting in a robust and accurate model

with reduced requirements for computational resources as compared to other state-of-the art methodologies.

The analysis of different aircraft measurements and parameters can provide insights which are very important for aviation

safety. Wooder et al.  utilized a surface fitting method and BD from the FlightGear simulation software in order to

extract possible correlations among different variables and parameters. The proposed method helped to identify

correlations even between variables which initially seemed irrelevant to each other. Testing of the proposed methodology

indicated that it is a capable solution and can successfully identify relations in processes which focus on aircraft fault

detection. In their publication, Li et al.  also proposed a variable selection algorithm which was aimed at effectively

mining variables which are highly correlated to an aircraft’s safety. The algorithm can be useful in cases of aviation BD

containing a very large number of variables (e.g., 3000 or more). Simulation results indicated satisfactory efficiency and

high capability in dimensionality reduction.

2.3. Health Monitoring Systems

The utilization of aircraft operation data and past events for improving the operation and the availability of aircraft through

effective health monitoring systems is crucial for aviation. Jiao et al.  demonstrated a Prognostic Health Management

(PHM) system which made use of an aviation BD mining platform. The platform was based on the Hadoop cloud

architecture and used BD deriving from the whole lifecycle of an avionics system. The platform also analyzed the

correlations among different tasks/system states and provided early warnings for potential faults. Forest et al. 

proposed an end-to-end scalable pipeline for analytics based on aviation BD and tailored for aircraft health monitoring.

Through this, users could extract features from flight operation BD stored on a cluster, and the pipeline also included

clustering and dimensionality reduction algorithms as well as had visualization capabilities. The implemented health

monitoring application could be easily used even by inexperienced users. The following two publications referred to

different BD-based architectures for aviation health monitoring systems. Xie et al.  presented an architecture for

helicopter health management systems. The architecture was comprised of three main modules, namely the helicopter

health management module, the helicopter fault monitoring and diagnosis module, as well as the helicopter fault

knowledge map. The authors analyzed the correlations among the different components mentioned above, as well as

described the main sources of BD such as the flight parameter recorder data logging control box, the engine vibration

sensor, the drive shaft vibration sensor and many others. Zhaobing et al.  described an architecture for a health

management system for civil aircrafts. It was comprised of four layers, namely the base layer, the data layer, the business

logic layer, and the decision output layer. The operation BD that the architecture utilized consisted of the air–ground data

link, the ground data link, and the operational data. The authors also examined the use of the proposed architecture in a

typical fault case of the aircraft’s air conditioning, noting that the architecture could predict the fault in a timely manner.
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The smart diagnosis of faults drastically improves aviation safety and helps in reducing downtime, operating costs, and

expensive repairs. Luo et al.  proposed an architecture which helped in the early detection of errors or problems in an

aircraft’s electronic parts from the navigation, instrumentation, communication, and automatic control systems. Towards

this direction, BD was used to generate Long Short-Term Memory (LSTM), Support Vector Machine (SVM), Random

Process, and Unscented Particle Filter (UPF) models. Data preprocessing was included in this architecture and is also a

vital part, as in avionics data, data loss, noise interference, and abnormal measurements are common phenomena. This

architecture was tested on a maintenance scenario, proving its capabilities in fault detection and remaining lifetime

prediction. Ning et al.  proposed an LSTM autoencoder model for detecting errors as well as for the classification of

faults/problems. The model was tested on BD from a commercial fleet and was found very effective and capable of

detecting the health state of an aircraft as well as of detecting diverse faults (e.g., in pressure control valves, in 390F

sensors, or in 450F sensors) with high accuracy.

3. Big Data in Aviation Management

The second category of analyzed publications included BD-enabled applications related to air traffic management,

trajectory planning, prediction of delays, effective resource allocation, maintenance optimization as well as applications for

increasing customer satisfaction and collecting customer insights.

3.1. Air Traffic Management and Trajectory Planning

Effective Air Traffic Flow Management is of paramount importance for modern aviation, especially given the increasing

number of Unmanned Aerial Vehicles (UAVs). Gui et al.  proposed a model for the calculation of air traffic flow, based

on BD from Automatic Dependent Surveillance-Broadcast (ADS-B) ground stations and the received ADS-B messages.

Through the analysis of the constructed dataset and by mapping the information extracted to each corresponding route,

the authors could predict the air traffic flow for more than 200 routes. For this, two different algorithms were tested, namely

LSTM and Support Vector Regression (SVR). Experimental testing of the algorithms indicated that LSTM could provide

more accurate results, even when abnormal measurements were present. Air traffic BD was also used in the publication

of Madhavrao and Moosakhanian , where it was combined with weather BD. More specifically, the authors

demonstrated a BD platform where synthetic flight trajectory data were fused with data from the Federal Aviation

Administration (FAA) NextGen Weather Services. The platform used complex queries in order to determine the impact of

weather and helped in the strategic planning of airlines and air traffic managers. In the experimental testing of the

platform, different usage scenarios related to aviation were tested and the platform could estimate the weather impact in a

timely manner, also applying diverse business rules. Petrou et al.  demonstrated a BD framework for accurately

predicting long-term streaming trajectory data with low latency. Surveillance BD was utilized which was enriched with

heterogeneous data from various sources. The architecture consisted of the stream processing layer (including a

trajectory synopses generator, a semantic integrator, and a future location prediction), a batch processing layer (including

a data manager and trajectory clusterer), a visual analytics module, and an interactive visualization module. A stream of

surveillance data combined with archival data from different sources were provided as inputs, while the output of the

architecture encompassed the stream of trajectory predictions.

BD related to the aircrafts’ trajectories can also be useful for evaluating a flight’s performance as well as in trajectory

visualization solutions. Based on their previous work on the AIRPORTS DL framework, Garcıa-Miranda et al. 

presented an end-user application which was capable of computing diverse metrics and performance indices, based on

BD about flown trajectories. The application could calculate the metrics in a scalable way and some of the metrics

displayed in the application included the peak load, the number of conflicts as well as the traffic density. The authors

described a potential workflow for calculating these metrics in advance as well as providing a user-friendly dashboard to

access the metrics. Zhao et al.  proposed a methodology for processing real-world flight BD and subsequently using

this data to visualize multiple flight trajectories in different time frames. The methodology provided the capability to display

multiple trajectories of the same route on Google Earth application. This enabled the comparison of different trajectories

as well as the identification of potential problems/dangers based on the identified deviations. The authors underlined that

their method provided benefits over other similar applications, by improving contrast as well as by overcoming the

problem of displaying a single track only at a specific timeframe. Testing of the methodology was conducted based on

flight data from the Airbus A321 aircraft, proving its feasibility and effectiveness.

3.2. Delay Prediction and Resource Allocation

Flight delays can have negative impacts on customer satisfaction and lead airlines to financial losses. Therefore, flight

delay prediction can be very beneficial. Jiang et al.  aimed to extract useful patterns in cases of flight delays so that
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they could achieve precise delay prediction with the aid of aviation BD and ML models. Some of the parameters the

authors analyzed to see if and how they were correlated to delays were: the weather conditions, the flight date and time,

the location, the airport congestion, etc. The authors then generated an SVM model, a Decision Tree model, a Random

Forest (RF) model, a Convolutional Neural Network (CNN), as well as a Multilayer Perceptron model for flight delay

prediction. For the experimental testing of the models, the authors utilized Airline OnTime Performance (AOTP) data as

well as Quality Controlled Local Climatological Data (QCLCD) data. The CNN model was found to be the best of the five,

yielding an accuracy of 89.32% in delay prediction. The publication of Gui et al.  also examined several factors which

may lead to flight delays and used ML models to execute flight delay prediction tasks. The authors divided the main

causes of delays into four main categories: flight-related (e.g., flight number, flight delay history, and pre-flight conditions),

airport-related (e.g., air traffic flow and leave/arrive speed), air-route-related (e.g., peak traffic flow and real-time traffic

flow) and other (e.g., what season it is, if it is a holiday, and if an unexpected event has happened). ADS-B BD together

with other sources of data (e.g., weather conditions and airport information) were used to experimentally test the

generated LSTM and RF models for flight delay prediction. The RF model was found to be the most accurate of the two,

reaching an accuracy of 90.2%.

Efficient airspace resource management can play an important role in reducing flight delays as well as in air route

optimization, proper adjustments in flight schedules, layout planning, etc. Towards this direction, Shi et al.  presented a

residual airspace resources evaluation methodology for commercial aviation based on BD. Specifically, QAR BD was

used with a specific focus on the exit of the terminal area and the key waypoints. The authors conducted successful

experimental testing of the methodology in a commercial airport in China, accurately calculating the residual airspace

resources. In contemporary and future Air–Ground Vehicle Networks (AGVNs) there are many challenges regarding

resource allocation, secure communication and mobility management. Sun et al.  proposed a network architecture for

AGVNs where a unified surveillance plane could be utilized to provide local as well as global BD to stations, serving a side

system for the established communication links. The authors outlined how the side information can be obtained,

organized, managed, and finally used in the context of a so-called Aviation Data Lake (ADL). In ADL, data analysis

methodologies, ML models, and multilateration filters could be utilized for acquiring local and global information. The ADL

provided many benefits in resource allocation, security, resource management, etc. The authors highlighted the viability of

the approach and provided numerical results in a case study including ADL-assisted handover of low-altitude UAVs.

3.3. Optimizing Maintenance

Scheduled and unscheduled aircraft maintenance workloads are characterized by uncertainty. Based on that, Dinis et al.

 explored the use of Bayesian Networks as a BD predictive analytics tool. The Bayesian Networks were based on the

BD from maintenance projects of a Maintenance, Repair and Overhaul (MRO) organization in Portugal. The Bayesian

Network models were developed based on different hypothesis variables and were evaluated, demonstrating their

applicability as well as their superiority over contemporary approaches for capacity planning. The authors also highlighted

that this solution could also help in sales planning, as well as that the consideration of uncertainty in the decision-making

progress in the context of this solution could contribute to more informed decisions regarding the required manpower.

Daily and Peterson  presented an example where the GE Aviation company combined BD from different sources to

improve its predictive maintenance capabilities. These sources encompassed flight data, air quality data, environmental

data, etc. This allowed the company to cluster the engine data according to the operating environment. It was found that

the environment in certain places (e.g., China, the middle east) could lead the turbine to heat up and could reduce the

efficiency. All the above contributed to better predictive maintenance as well as to the avoidance of unnecessary

maintenance.

3.4. Collecting Customer Insights/Increasing Customer Satisfaction

BD analytics can provide useful insights about customer behaviors and customer satisfaction. In  Sternberg et al.

examined if social BD of a certain airline could be utilized to improve certain performance metrics. In specific, BD from

Turkish Airline’s social media was processed, together with data from other sources such as the monthly number of

passengers, the stock price, and the quarterly revenue. The authors performed text mining, used a Naïve Bayes classifier

to classify text and implemented predictive and visual analytics. Through their experiments, they identified a weak relation

between the business data and social BD. However, from the findings, explanations could be provided about the customer

behavior and satisfaction, based on the social media data. Khalil et al.  presented a Linear Regression model for

predicting flight-related web searches of commercial aviation customers. Flight searches are some of the most popular

web searches, so the accurate prediction of such searches is very useful and BD analytics help in this prediction. The

authors utilized the BD framework SparkML library and statistics. Experimental testing on the proposed model was

conducted using BD from domestic airports and yielded an accuracy of about 90%. Ling and Weiguo  described how
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BD can increase aviation service quality and customer satisfaction. BD from different sources (e.g., historical data, data

from mobile operators or tourist platforms) can be utilized for flight arrangement optimization (e.g., to make adaptations to

routes, to adjust flight time and the prices). Furthermore, personalized travel services can be provided to customers based

on their preferences and other data related to them (e.g., date of birthdays and route preferences). Three other examples

for the usefulness of BD included the fast and efficient collection of customer satisfaction feedback (e.g., through

microblogs or fora), efficient emergency handling increasing the sense of safety of customers, and finally the maintenance

optimization resulting from BD analytics which increases the sense of safety of customers and can also lead to decreased

prices.

4. Big Data and Unmanned Aerial Vehicles

The third category of analyzed publications deals with UAVs which are aerial vehicles, not carrying a human operator and

can fly autonomously or be controlled remotely . The following applications are divided into solutions for industry and

solutions for different infrastructures.

4.1. Solutions for the Industry

Source localization is extremely important in industrial monitoring as well as in other fields (e.g., search and rescue and

electronic countermeasure). The use of illegal radiation can have negative effects in the operation and the

communications of industrial facilities. Li et al.  proposed two methodologies for the simultaneous localization of

different emitters which utilized BD collected by a UAV. The main goal was to improve the original two-step Direct Position

Determination (DPD) methods which face non-homogeneity and are sensitive to the environment. First, the authors

proposed a weight Direct Position Determination (DPD) methodology which used blindly estimated Signal-to-Noise-Ration

(SNR) and then proposed an optimal weight DPD methodology. The UAVs were mounted with an antenna area which

intercepted signals at specific time slots. Simulation results of the proposed methodologies showed that they

outperformed traditional two-step DPD methodologies in both resolution and localization accuracy. Fernández-Caramés et

al.  described a UAV-based solution for the automatic execution of inventory tasks and industrial item traceability tasks

which could ensure data trustworthiness and thus facilitate the extraction of reliable BD analytics (e.g., analytics for supply

chain efficiency). The solution utilized Blockchain technology, a distributed ledger, and smart contracts technologies. The

UAV collected real-time inventory data as well as could locate items in a warehouse by making use of the Signal Strength

Indicator (SSI) of Radio Frequency Identification (RFID) tags. Experimental testing of the system in a real industrial

environment indicated its feasibility as well as its faster performance as compared to executing these tasks manually.

4.2. Solutions for Infrastructures

The following three BD-based solutions were related to the electricity infrastructure and to the communication

infrastructure. Image recognition is widely used in power distribution systems for various reasons such as identification of

poles and wires, measurement of the icing thickness in power lines, measurement of the distance between wires and

trees, etc. Hu et al.  proposed a methodology for detecting transmission towers based on BD and UAVs. The

methodology made use of a Recurrent Convolutional Neural Networks (RCNNs) model for extracting characteristics of the

towers, training the tower model as well as achieving quick image recognition and subsequently generate the power lines.

For acquiring the BD required by the model, photos were used which were captured by a fixed-wing UAV. Experimental

testing of the methodology showed that it could achieve fast and efficient identification of transmission towers. Although

the methodology was not as accurate as the tree barrier modelling methodology that it was compared to, it could achieve

similar accuracy in a much faster way, yielding an average decrease of 14.2% of the required time for the computations.

UAVs can be utilized for delivering wireless services (e.g., a 5G mobile network) to targeted areas. However, in such

cases there is often a tradeoff between energy consumption of the UAV and the delivery of wireless capacity to areas

which have to be explored as they are not necessarily known in advance. Towards this direction Guo  demonstrated a

Deep-Reinforcement-Learning-based methodology which utilizes BD for the optimization of both aggregate and minimum

service provisioning. The proposed solution offered stable performance, helped reduce overfitting phenomena and was

also partially explainable. The methodology addressed Quality of Service (QoS) and Quality of Experience (QoE)

requirements and achieved decreased energy consumption. Experimental testing of the methodology, showed that it

outperformed rule-based UAVs in terms of efficiency and stability, reaching a 40% energy consumption reduction. Another

similar solution was proposed by Xu et al. , this time for ensuring network communication and the capability to manage

BD in cases of disasters. When a disaster happens, network communications may be disrupted. To tackle this, the

authors proposed a solution where UAVs served as mobile edge nodes and the LoRaWAN protocol was used to connect

UAVs with the control center. Two algorithms were proposed for task management and queue management. Experimental
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testing indicated that the solution could provide a relatively cheap and easily deployable Mobile Edge Computng service,

which increased the service range as compared to an edgeless contemporary solution, while maintaining the same level

of SNR and path loss. Providing mobile cellular services is quite power consuming for UAVs and often a charging

infrastructure is employed including charging stations. Jung et al.  proposed an Energy Management System (EMS)

solution which incorporated a sharing mechanism among different charging towers and aimed at minimizing the operating

costs of UAV-solutions encompassing BD analytics. The solution was based on a Deep Reinforcement Learning model

and experimental testing showed satisfying results in terms of optimizing energy sharing and energy consumption. The

solution also contributed to minimizing the need of purchasing energy directly from the utility company. Another IoT-

enabled solution which is not directly related to network infrastructures but can help in such applications comprising

different base stations and BD processing was proposed by Wan et al. . This solution consisted of three main layers. At

the first layer, distributed sensors produced raw data. At the second layer based on mobile edge computing, UAV base

stations collected the data, and performed an initial processing. Finally, at the third layer, a cloud service received the data

from the previous layer and performed further processing and evaluation. The authors proposed a Lyapunov-optimization-

based algorithm for online edge processing as well as Deep-Reinforcement-learning-based model for efficient path

planning of the UAVs. Experimental testing of the solution indicated its feasibility, effectiveness, and capability of

increasing the service coverage.

5. Big Data in Military Aviation

The fourth category of analyzed publications included applications which can support air force military operations as well

as increase the safety in military aircraft.

5.1. Supporting Military Operations

The characterization of aircrafts is of vital importance for military aircrafts as it can help determine if an observed aircraft

poses a threat or not. Zhao et al.  demonstrated a BD-based solution for characterizing if a specific aircraft is

commercial or military based on diverse kinematic attributes. For this, the authors relied mostly on BD from ADS-B

messages and Global Positioning System (GPS) technology, rather than on radar communications. The ADS-B messages

included information about the ground/vertical speed, the altitude, the heading, the call sign, the exact position, etc. For

achieving accurate classification of the aircrafts, a CNN model was used. Although the solution was not yet fully finalized,

experimental results showed a promising capability of accurately predicting the type of an aircraft. Dästner et al. 

demonstrated how different Machine Learning methodologies and ADS-B BD can be utilized to classify and identify

military aircrafts in real-time applications. More specifically, RF, Gradient Boost Trees and Multilayer Perceptron

classification techniques were used. Experimental testing indicated mediocre results, yielding a 60% classification

accuracy. Based on that, the authors proposed the use of these models as complementary/additional tools for detecting

military behavior.

BD can also facilitate decision making in military operations. In  Norman et al. described how commercially tested BD

analysis methodologies could help the Joint Strike Fighter program, acquire stronger knowledge management and

analysis capabilities for testing and evaluation processes. At the same time, the authors highlighted how these

methodologies could also lead to faster and more efficient decision making. Some indicative examples of how BDA could

support military aviation and the Joint Strike Fighter system in specific included: (i) flight classification and determination

of what maneuvers a military aircraft performed; (ii) deriving unknown relations by utilizing association rules; (iii)

conducting predictive maintenance of aircrafts and facilitating physical inspection. Finally, the authors noted that through

BD analytics regarding 1400 flights, data analysts with no technical knowledge for aircraft failures could predict failures

with a satisfying accuracy of 70%.

5.2. Increasing Air Force Safety

Frantis  presented a BD-based architecture for increasing air force safety. The author underlined that there can be

many different data sources such as aircraft data recorder files, military flight planning systems, logistic information

systems, civil flight planning systems, ADS-B messages, weather data, military real-time data links, etc. The proposed

architecture was comprised of three layers. The first layer included all the data sources and the interconnections with

other systems. The second layer encompassed a BD database which had the main task of data handling/processing.

Finally, the third layer included the user interface and translated the search results into a form which was understandable

by the user. The third layer included an application which enabled the user to make questions and data queries, as well as

processed script batch files which had already been created. In , Cai et al. made specific proposals for improving the

Aircraft Engine Health Management systems which the authors underlined that are applicable in fighter aircrafts as well as
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in large military transport aircrafts. The role of BD was highlighted and the main pillars for the improvements were (i)

improved data management; (ii) advanced fusion of heterogeneous information; (iii) accurate prediction methodologies;

(iv) proper system integration. Regarding the prediction methodologies in specific, BD analytics could come in handy

regarding the processing of heterogeneous engine data. Expert systems, fuzzy logic as well as Neural Networks,

Bayesian networks, and Hidden Markov models were some of the examples of models proposed for improving prediction

tasks (e.g., fault diagnosis, predictive maintenance). Finally, regarding the integration, the importance of integrating the

Health Management system with the Engine Control system and other onboard systems was noted.

In , Morgan et al. described the important role of BD in military campaign simulation and subsequently in better

decision making in defense as well as in increasing safety for air force pilots. The so-called Synthetic Theater Operations

Research Model (STORM) for campaign simulation included air and space warfare among other warfare types (i.e., land,

maritime, amphibious). BD in such tools could help detect consistent threads as well as causal threads. The authors also

described a relevant suite which had several postprocessing and visualization capabilities. Large-scale air attack

simulation, exploration of combat maneuvers and weapons testing, analyzing measurements from sensors which detect

aircrafts, status of critical aviation resources, determination of aircraft loss were just some examples of the aspects

covered in the simulation tool.

6. Aviation Big Data Related to Environmental and Health Aspects

Aviation BD can also benefit applications related to environmental (e.g., measuring pollutants) and health aspects (e.g.,

controlling the spread of diseases).

6.1. Aviation Big Data Related to Health Aspects

BD can facilitate the fight against major health incidents, such as the recent pandemic of COVID-19. Lin and Hou 

described how AI and different sources of BD helped in combatting the COVID-19 pandemic in east Asia. BD from

aviation, railway, and ground transportation systems, from customs or immigration databases, from pandemic-specific

COVID-19 or healthcare databases, from social media, from card transaction databases, from security cameras, from

wearable tracking devices or car GPSs are just some examples of BD sources that helped in flattening the curve of the

pandemic. Examples of the AI tools utilizing BD described in the aforementioned publication were about facilitating

targeted lockdowns, classification of patients, early diagnosis, facilitating communications, providing notifications for the

pandemic, self-health reporting, etc. Gallego and Font  proposed a methodology which could early detect the

reactivation of the tourist markets, which had been influenced by the COVID-19 pandemic. The main goal of this

methodology was to support Destination Management Organizations managers in taking informed policy decisions as well

as in minimizing the negative effects of COVID-19 in tourism. Making use of operational transactional BD (i.e., air

passenger searches, website visits, bookings, selections) the proposed methodology helped to better understand the

market behavior and to stimulate demand.

BD can be very useful for combatting epidemics and pandemics including but not limited to COVID-19. Jia et al. 

demonstrated a multidimensional framework describing the contribution of BD in such situations. The frameworks

spanned the prevention, control, and repair related to major health incidents. In specific, IoT data collection platforms, BD

from mobile devices, from social media and even from big gene banks could be utilized for the early detection of an

epidemic/pandemic. Regarding the response mechanisms, BD for the predictive analysis of virus dynamic models as well

as BD for supporting decision making systems and reporting systems could be very useful. Research regarding the

development of vaccines or medicines for a disease could also make use of BD (e.g., for genetic data analysis or for real-

time data analysis from patients based on IoT). Using BD could also help in tracking infected persons or persons that

came in contact with infected individuals as well as in determining the source of a specific infection. Finally, the authors

also provided examples of the potential of using BD for eliminating fear, for policy adjustments as well as for analysis of an

epidemic’s/pandemic’s impact from a political, social, or economic point of view. Rocklöv et al.  demonstrated how BD

was used to contribute to monitoring the introduction and spread of the Chikungunya in Europe during 2017. The authors

utilized aviation BD for areas with active transmission of the specific virus in order to estimate the risk of virus importation

from other areas. Then, they used BD from Twitter posts to estimate mobility patterns of users as well as to estimate the

risk of short-range dispersion. Finally, BD was used to estimate the seasonal vectorial capacity of the one of the species

of mosquitoes which was responsible for the dispersion of the disease (i.e., Aedes albopictus species). The authors

extracted indicators for identifying the virus dispersion and made estimations of the suitability of local climate for a

potential virus outbreak.
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6.2. Aviation Big Data Related to Environmental Aspects

BD can be extremely helpful in the field of pollutant and emission measurement. In  Lu et al. utilized BD from a civil

airport in China in order to calculate the Landing and Takeoff (LTO) emissions of different pollutants. Utilizing hourly LTO

data of 302 days of 2015 about the specific airport, the authors calculated the annual emissions of sulfur dioxide (SO ),

nitrogen oxides (NO ), Volatile Organic Compounds (VOCs), carbon monoxide (CO), particles with a diameter of 10 μm

(PM ), and particles with a diameter of 2.5 μm (PM ). A Monte Carlo methodology was also used to conduct uncertainty

analysis of the results. The uncertainty varied from 7% to 10% in different pollutants. The overall BD-based methodology

outperformed other traditional methodologies in terms of accuracy. Environmental BD can play an important role also in

the maintenance of aircrafts and the reduction in their emissions. Martínez-Prieto et al.  proposed a data model which

aimed to increase the flight efficiency, reduce fuel consumption and pollutant emissions as well as to ensure customer

satisfaction. The authors combined BD from diverse providers as well as reconstructed flight trajectories. The main goal of

this model was to convert ADS-B messages of different sources into clean and easy-to-use information, taking advantage

of surveillance information, flight information and air traffic control data. An information processing pipeline was also

developed in the context of this model which helped to clean, transform, and enrich the data from the ADS-B messages.

The effectiveness of the model was also proved through a two-week evaluation with data deriving from three different

providers. Zhao et al.  presented their design of a system for monitoring urban air quality, based on UAV technologies

and BD. The authors described the hardware design and provided details about the storage module, the processor, the

transmission module with GPRS connectivity, the UAV, the air quality sensor, and the anti-interference system. This

solution included measurements of the dust particle concentration, the CO concentration, the temperature, and the

humidity. The electromagnetic anti-interference system helped in ensuring reliability even under harsh conditions.

Experimental testing of the solution proved its capability of successfully measuring different air quality parameters as well

as of providing adequate anti-interference.

BD analytics can play an important role in wildfire prevention and management. Athanasis et al.  demonstrated a

solution which aimed at improving the surveillance for wildfire prevention and management, through the near real-time

analysis of BD deriving from UAVs. A BD cluster was utilized by the authors and a MapReduce algorithm was

implemented to identify images from burning forests. The solution was tested in the Greek island Lesvos during 2018 and

it was found to importantly improve the required time to analyze the images received by the UAVs, thus contributing to a

timelier and more reliable management of the authorities regarding the emergency response crews. The authors also

highlighted that the execution time of the BD analysis was not affected by the area covered by the images.

7. Big Data in Space Technology

The sixth category of the publications presented in this research included BD application related to the support of space

missions and solutions utilizing spaceborne BD.

7.1. Supporting Space Missions

Dong et al.  proposed an BD-enabled architecture for supporting launches at rocket launch sites. The architecture was

comprised of many different elements including, space mission planning, mission management, command support,

visualization of launch mission status, analysis and fusion of launch vehicle operating data, detection of faults and errors,

equipment diagnostics and performance evaluation, decision support, allocation of resources, monitoring of dangerous

chemicals, emergency response system, training simulation, software management, knowledge management, etc. The

BD utilized in this architecture came from two main categories, the launch mission data (e.g., monitoring of the flight

phase, weather data, organization, and command data) and the daily operating data (e.g., equipment management data,

simulation data, and monitoring data of launch facilities).

Ensuring that astronauts remain healthy is of vital importance for the performance and the success of space missions.

Prysyazhnyuk and McGregor  proposed a novel BD analytics visualization methodology which aimed at improving

clinical decision systems in space. This spatio-temporal visualization methodology provided an accurate description of the

astronaut’s body functions and trajectory of health state and could also help in the detection of anomalies and potential

pathologies. The visualization technique was capable of depicting task and time specific dynamics and its feasibility was

tested during terrestrial simulation experiments. Aiming to expand the capabilities of the health analytics platform called

Artemis, Yeung and McGregor  presented a solution based on BD analytics which helped in the determination of the

health state taking into consideration the countermeasure activities in microgravity performed by astronauts. Such

activities are performed in order to help them better physically and psychologically adapt to the space environment. The

tool functioned as a feedback component within Artemis and through BD analytics, a better overview of the overall
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astronaut’s health could be provided which incorporated the effects of the countermeasure activities performed. A case

study was also provided by the authors, to highlight the usefulness of their tool in optimizing life support systems in space.

The useful life of on-orbit satellites can be affected by several factors such as the remaining life of batteries, the condition

of the solar array, the reaction wheels, etc. Huang et al.  proposed a Bayesian framework for estimating the remaining

useful lifetime of operating satellites, based on BD. The particular framework depended on historical telemetry BD from

other satellites as well as on certain parameters regarding the performance degradation of critical components. The

feasibility of the framework was demonstrated through an example where the framework was used to determine the

remaining lifetime of a satellite, based on data for the array wing power losses and for the Li-Ion battery degradation.

7.2. Solution Utilizing Spaceborne Big Data

The Besançon Galaxy Model (BGM)  is a popular tool performing statistical analysis for the Galactic structure and

evolution. Aiming to expand the capabilities of this model, Mor et al.  demonstrated a theoretical framework called BGM

FASt which facilitates the study of the Milky Way based on Bayesian methodologies. This framework could utilize BD such

those of the aforementioned Gaea space mission and it also executed multi-parameter inference. Experimental testing of

the framework showed a dramatic decrease in the time required for execution (about 10,000 times lower) as compared to

the standard BGM model, while providing very similar results with it. The framework could also infer stellar mass density,

star formation history and the initial mass function at the same time.

In , Kiemle et al. referred to the earth observation BD (e.g., images, multispectral data) from satellites, managed by the

German Aerospace Center as well as to the Data Information Management System (DIMS). The German Satellite Data

Archive has been a vital part of many earth observation missions. The DIMS can handle massive volume of data and is

comprised of different components which are relevant to processing management, product/order management, online

product publishing/delivery, handling online user information, handling data access as well as monitoring, reporting, and

control.

Synthetic Aperture Radar (SAR) BD from satellites can be utilized in the study of ocean wave observations. Huang and Li

 used spaceborne Wave Mode (WM) BD over a period of ten years for extracting parameters related to the ocean,

namely the Significant Wave Height (SWH) and the Mean Wave Period (MWP). The already known parametric model was

used for the calculations and statistical analysis of the results was also conducted. The calculations were in agreement

with the in situ buoy data with a correlation coefficient of 89% of SWH and 83% for MWP. Spaceborne SAR data can also

be used for detecting oil spills on the sea. Zeng and Wang  proposed a Deep Convolutional Neural Network (DCNN) for

detecting oil spills, utilizing SAR data from satellites. The authors conducted experiments utilizing 20.000 SAR patches

and compared the model’s performance with other Machine Learning classifiers (VGG-16 and AAMLP). The proposed

model outperformed both models in terms of accuracy, recall, and precision metrics, reaching 94.01% accuracy, 83.51%

recall and 85.70% precision. The authors also underlined the high distinguishability of the features learned by the

proposed model, which contributed to its very satisfying performance.

Disasters can seriously affect the proper functioning of the communication infrastructure and obstruct humanitarian relief

operations. Nagendra et al.  demonstrated how satellite BD analytics could benefit such operations in cases of

disasters. A case study was presented regarding a BD analytics platform which supported humanitarian operations during

the floods which occurred in the Indian state Kerala. This platform facilitated logistical planning as well as the execution of

security missions. The data sources which were utilized included satellite images, geospatial data, weather data, etc.

BD can also be used in image decompression applications as well as for creating libraries for programming languages.

Nuñez et al.  proposed a tool for the decompression of images of the under-development space telescope PLATO,

which will survey different stars. In the publication, compression was initially carried out for the BD processed by the

telescope. The images were cropped and then compressed utilizing a lossless algorithm. Soon after that, the compressed

data were sent as telemetry to the ground service module in the form of data packets. The authors’ tool collected and

classified these data packets and utilizing metadata and other scientific data they reconstructed the cropped and

compressed images. Breddels and Veljanoski  presented the so-called vaex library for the Python programming

language which can be particularly useful in the processing of massive astronomical catalogues as well as for other

datasets. The library was comprised of different packages for visualization, client–server communication, mapped storage

as well as one package specifically for astronomy. This astronomy-oriented package enabled transformations and

selections as well as memory mapped storage. The authors incorporated streaming algorithms and enabled the

processing of datasets which are larger than what the hardware specifications of a computer would normally allow. One

use case described by the authors and highlighting the usefulness of the library, is handling photometry, astrometry, and

spectrometry data deriving from the Gaea space mission. A BD-based methodology utilizing data from the same space
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mission was proposed by Castro-Ginard et al. . Specifically, the authors’ methodology had the main goal of detecting

open clusters (a kind of star cluster, sharing some characteristics and having about the same age). For this, an

unsupervised clustering algorithm and a supervised Artificial Neural Network (ANN) were utilized. The search of open

clusters using this methodology yielded a 45% increase in known open clusters.
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