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Liquid Biopsy (LB) is a novel method for cancer diagnosis performed by analyzing and sampling of non-solid

biological tissues, obtained primarily from blood, but also from other body fluids such as urine, saliva and

cerebrospinal fluid.
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1. Introduction

Tumors and their metastases release biomarkers, mainly CTCs, cell free nucleic acids (cfDNA and cfRNAs),

extracellular vesicles such as exosomes, and tumor educated platelets (TEPs), that can distantly reflect the

disease (Figure 1). Therefore, liquid biopsies (LBs) represent a minimally invasive technique and allow diagnosis,

real-time monitoring of cancer evolution and molecular follow-up of patients . Also, LBs give us a better picture

of the tumor heterogeneity than a tissue biopsy which only captures a specific area, since the whole tumor mass

releases material into the blood .

Figure 1. Liquid biopsy components in PDAC. Tumor cells (CTCs) are shedded from the tumor into the blood

vessels where they can release their components: nucleic acids and exosomes with tumor-specific cargo material.

For the analysis of these molecules, blood can be extracted and plasma or serum further processed for the

extraction of the desired components. From the blood circulation, these molecules can be filtered to saliva and

urine which can also be collected and further analyzed. CTC: circulating tumor cell; TEP: tumor educated platelet,
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RBC: red blood cell; WBC: white blood cell; cfDNA: cell-free DNA; ctDNA: circulating tumor DNA; miRNA: micro

RNA; lncRNA: long non-coding RNA.

Recent technological and molecular advances have increased our ability to detect and analyze LB components. In

the following lines we will briefly introduce the different methods currently available for blood-based LBs (Table 1).

Table 1. Methods for isolation and analysis of liquid biopsy components in pancreatic cancer. Overview of the

advantages and disadvantages of the described methods.

LB
Component Technique Advantages Disadvantages Ref.

cfDNA

qPCR
Fast & Inexpensive
High specificity

Lower sensitivity (0.1%)
Detects only point
mutations

dPCR* (ddPCR,
BEAMING)

High sensitivity (0.01%) &
specificity

Detects only point
mutations
Expensive

NGS

High DNA input permits high
throughput analysis and
screen for unknown variants
(WGS &WES)
Can identify structural
variants and copy number
variations

Variable sensitivity (0.1%
aprox.)
Expensive

Exosomes

Density-based
isolation*
(centrifugation)

Inexpensive
Independent of marker
expression

Time consuming
High volume sample
required
Can damage exosomes
Contaminated sample

Size-based
isolation

Fast & Inexpensive
Independent of marker
expression

Contaminated sample

Affinity-based
isolation

High purity and specificity Low sample yield

Commercial kits Fast & Simple Expensive

CTCs

Immunoaffinity
enrichment*

Positive enrichment:
- Very specific
- High capture efficiency &
purity
Negative enrichment:
- Label-free CTCs obtained

Only one subpopulation
captured

Lower purity
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LB
Component Technique Advantages Disadvantages Ref.

Physical methods
(size & density)

Represent tumor
heterogeneity
Fast & Simple
Less expensive
Label-free CTCs obtained

Must be followed with
immuno-labelling
techniques to distinguish
CTCs

cfRNAs

RT-qPCR
Fast & Inexpensive
High specificity

Low sensitivity in
samples with low
abundance cfRNA

ddPCR*

Higher sensitivity & accuracy
Lower sample volume
required
More reproducible than
qPCR

Tedious assay
optimization

LB: liquid biopsy; qPCR: real-time quantitative-PCR; dPCR: digital-PCR; ddPCR: droplet-dPCR, NGS: next

generation sequencing; RT-qPCR: quantitative reverse transcription PCR; WGS: whole genome sequencing; WES:

whole exome sequencing. * Most used/gold standard. 

2. Liquid Biopsy in Other Body Fluids for the Early Detection
of Pancreatic Ductal Adenocarcinoma (PDAC)

Molecular analyses for the early detection of PDAC via LB are also being developed in other body fluids such as

pancreatic juice, saliva and urine. The collection of pancreatic juice from the duodenal lumen is less invasive than

other tissue biopsy collection methods, but it is still a relative invasive and difficult technique that needs to be

performed by specialized personnel. Nevertheless, a number of molecular studies have been performed for the

diagnosis of PDAC using pancreatic juice, mainly for the detection of KRAS mutations . A meta-analysis of 16

studies that analyzed the diagnostic value of KRAS mutations revealed that the sensitivity and specificity levels for

the diagnosis of PDAC were 0.59 and 0.87, respectively , and another meta-analysis of 39 studies assessing

the diagnostic value of the four major altered genes in PDAC (KRAS, CDKN2A, TP53 and SMAD4), telomerase

activity, and combination assay revealed that the most reliable marker was telomerase activity with a sensitivity and

specificity of 0.82 and 0.96, respectively . However, these results should be analyzed with caution since they

cannot distinguish early PDAC from intraductal papillary mucinous neoplasm (IPMN), or pancreas with low-grade

PanIN, since alterations of KRAS and telomerase activity are also found in these lesions .

Saliva is a very convenient fluid for LB determinations since it can be easily and noninvasively obtained from

patients, and it has been reported that it contains almost the same molecules as serum because of the high blood

flow in salivary glands . Molecular studies have been performed in saliva for the diagnosis of PDAC. Exosomes

have been found in saliva in preclinical models and have been reported to discriminate PDAC, hence, they might

be potential biomarkers for detecting PDAC . A salivary transcriptomic analysis has identified a four-messenger
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RNA panel (MBD3L2, KRAS, ACRV1 and DPM1) that discriminates patients with PDAC from healthy controls with

0.9 sensitivity and 0.95 specificity . MiRNAs miR-3679-5p and miR-940 have been reported to be down- and up-

regulated in PDAC compared to healthy controls and benign lesions. The combined analysis of these miRNAs

showed 0.7 sensitivity and 0.7 specificity in PDAC vs. noncancer . The same group evaluated the expression of

salivary lncRNAs and identified up-regulated levels of HOTAIR and PV1T in PDAC patients in comparison to

healthy controls, with a combined sensitivity and specificity of 0.78 and 0.91 respectively. These values raised to

0.82 sensitivity and 0.95 specificity when differentiating PDAC from benign tumors .

Urine can be viewed as an ultrafiltrate of plasma and therefore may contain biomarkers that could assist with

PDAC diagnosis . Urine LB has the main advantages of allowing a completely non-invasive sampling and high

volume collection, and has a lower proteome content than blood to avoid contamination of possible biomarkers .

Because of this, many metabolomic  and proteomic  studies have been conducted in order

to identify possible biomarkers that can aid in the early identification of PDAC. With this purpose, Debernardi et al.

have reported a urinary biomarker panel comprising LYVE1, REG1B, and TFF1 and PancRISK score that can

discriminate patients with early stages of PDAC from control individuals and patients with benign hepatobiliary

diseases .

Regarding cell free nucleic acids, detection of KRAS mutations in urine from PDAC patients has also been

reported, and the detection rate and sensitivity are comparable to plasma LB . Urinary miRNA biomarkers have

also been analyzed and significant over-expression of miRNAs in PDAC Stage I versus healthy individuals (miR-

143, miR-223, miR-30e) and Stage I versus Stages II-IV PDAC (miR-204, miR-143, miR-223) have been described

. A recent study also showed that the miR-3940-5p/miR-8069 ratio in urine exosomes is elevated in PDAC

patients, suggesting that it may be a potential diagnostic tool for PDAC, especially in combination with CA19.9 .

3. Conclusions

Although there were many expectations set on the use of LB for early diagnosis, the truth is that the relatively low

sensitivity and specificity of current techniques does not allow its use for these purposes. In addition, the available

studies suggest that patients with PDAC in whom ctDNA is detected at the time of diagnosis have a poor prognosis

and have a high chance of relapse after surgery, so it is advisable to develop more sensitive techniques that allow

diagnosing tumors in earlier stages and provide patients with a better prognosis. It is possible that, with the

development of ultrasensitive techniques, the joint use of different biomarkers and epigenetic marks, the sensitivity

of LB will increase without losing specificity, and LB could be applied in PDAC screening.

The different LB methods have been shown to be a reliable biomarker in relation to the prognosis of patients with

PDAC for both PFS and OS. Furthermore, its variations throughout treatment predict response or resistance to

treatment several weeks in advance, so it could be used to guide treatment based on the evolution of the

biomarker. In addition, the study of the characteristics of CTCs, ctDNA, exoDNA and miRNA can help us to better

characterize the tumor and to identify potential therapeutic targets that facilitate the selection of treatment.
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However, it is necessary to standardize and validate the methodology to be used in the different LB modalities. In

addition, the usefulness of other LB modalities should be explored, such as lncRNAs or TEPs. On the other hand,

the usefulness of less invasive sources of ctDNA such as urine or saliva needs to be further investigated.

Finally, it should be remembered that in order to apply LB to clinical practice, it is necessary to reduce costs,

standardize protocols, and have data generated in the context of large-scale prospective clinical trials that confirm

that the information provided contributes significantly to improving therapeutic results in PDAC patients.
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