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The genesis of Anterior Skull Base (ASB) surgery as a distinct field is anchored in the innovations of the 1940s. Dandy’s

instrumental contributions are emblematic of this era, particularly his surgical strategy via the anterior cranial fossa for the

excision of orbital tumors and his subsequent expansion of the resection to incorporate the ethmoidal regions.
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1. Endoscopy in the New Era: Advanced Imaging, Robotic Assistance, and
Augmented Reality Overlays

Advancements in skull base surgery are increasingly leveraging the capabilities of virtual reality (VR) and augmented

reality (AR). For instance, color-coded stereotactic VR models can be custom-tailored for individual surgical cases,

providing a simulated operating field for surgeons and trainees . These models offer invaluable opportunities for surgical

education and preoperative simulations. Furthermore, VR technology can be integrated into real-time operative settings

by overlaying 3D images onto microscopic or endoscopic views, thus enhancing spatial navigation capabilities for the

surgeon .

AR technology appears to offer particular benefits to less experienced medical professionals. These systems serve not

just as educational tools but also as potential substitutes for existing neural navigation technology. AR can offer both

contextual information about underlying structures and direct patient perspectives, potentially revolutionizing conventional

neural navigation systems .

Beyond surgery, AR also has applications in non-surgical and clinical management at the skull base. For example, it is

used for ablating damaged nasal tissue and offers guidance on basic surgical plans and navigational protocols . In

cranio-maxillofacial procedures, AR plays a significant role in reconstructing cheekbones and offering data on the

underlying structure, albeit without the capability for real-time modifications . Many AR applications superimpose

precollected, immersive data onto real endoscopic camera images. However, fields that lie outside the endoscopic view

remain hidden to the medical team, necessitating further adaptations to fully realize the technology’s potential.

Moreover, the application of Augmented Reality in clinical settings, particularly in the management of base-of-the-skull

pathologies, has been gaining significant attention in the medical community, as evidenced by multiple academic

conferences exploring its potential . A specific clinical model has been proposed, offering an extended observational

perspective of the area under examination . In this model, endoscopic images are displayed centrally, while the

projection external to the endoscopic field of view is rendered virtually, utilizing pre-existing computerized tomography

data. Such an integrated AR framework suggests that, following technological advancements and methodological

refinements, AR applications may become increasingly prevalent across a broader spectrum of clinical scenarios

necessitating heightened alertness and precision .

When it comes to the design of an ideal AR device for clinical applications, certain rigorous criteria must be met to ensure

its functional efficacy and safety. The system should feature a focus marker and device alignment capabilities that are

intuitive and minimally intrusive, particularly for the medical professional using it. Calibration adjustments should be

undertaken before the initiation of the clinical procedure to minimize undue burden or cognitive load on the healthcare

provider .

Furthermore, conventional imaging techniques that focus solely on two-dimensional visual data may suffer from limitations

in perceived depth, thereby potentially compromising the practitioner’s situational awareness and decision making

accuracy. To mitigate such limitations, it is advisable to incorporate depth cues to enhance the perceptual veracity of the
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rendered images . Additionally, in applications where virtual 3D objects are superimposed onto endoscopic images, it

becomes imperative to maintain parallax when the viewing position changes in order to preserve spatial relationships and

depth perception.

In terms of data presentation, meticulous attention must be devoted to the structural layout of the AR interface.

Inadequate design considerations can obscure critical information or induce visual discomfort, thereby diminishing the

user experience and potentially compromising clinical outcomes. Therefore, it is essential to engage in an iterative design

process, incorporating user feedback and empirical data, to optimize the AR interface and data presentation for the

specialized needs of clinical practice.

2. Data-Driven Neurosurgery: Machine Learning, AI-Assisted Diagnosis,
and Surgical Planning

The application of Radiomics in oncological diagnostics has emerged as a transformative approach in recent years,

particularly in the preoperative assessment of various neoplastic conditions including prostate cancer, lung cancer, and an

array of brain tumors such as gliomas, meningiomas, and brain metastases . Traditional diagnostic methodologies

that rely predominantly on qualitative assessments made by radiologists based on “visible” features, Radiomics facilitates

the quantitative extraction of high-dimensional features as parametric data from radiographic images .

The incorporation of machine learning algorithms further enhances the analytical capabilities of Radiomics, offering

unprecedented insights into the pathophysiological characteristics of lesions that are otherwise challenging to discern

through conventional visual inspection . Several studies have demonstrated the utility of Radiomics-based machine

learning in the differential diagnosis of various brain tumors, thus indicating its prospective application in clinical decision

making .

In the feature selection domain, Least Absolute Shrinkage and Selection Operator (LASSO) has been noted for its

effectiveness in handling high-dimensional Radiomics data, particularly when the sample sizes are relatively limited .

LASSO distinguishes itself by its ability to avoid overfitting, making it an optimal choice for robust feature selection in

Radiomics analyses.

Additionally, Linear Discriminant Analysis (LDA) serves as another valuable machine learning classification algorithm

tailored for Radiomics applications. LDA seeks to identify and delineate boundaries around clusters belonging to distinct

classes and projects these statistical entities into a lower-dimensional space to maximize class discriminatory power.

Notably, it has been reported to retain substantial class discrimination information while reducing dimensionality .

Radiomics has extended its utility beyond diagnostic applications to prognostic evaluations, as exemplified in its role in

both the diagnosis and treatment control rate prediction for chordoma . Chordoma, a disease notorious for its refractory

nature necessitating multiple surgical interventions and radiotherapeutic treatments, poses unique challenges for

sustained disease control. In this context, Radiomic models built on features describing both the morphological shape and

the genomic heterogeneity of the tumor have demonstrated superior performance in predicting the effectiveness of

radiotherapy for tumor control. Such predictive capabilities underscore the potential benefits of Radiomics in enabling

more targeted, efficient treatment regimens for diseases such as chordoma, thereby potentially reducing the need for

repetitive, invasive procedures.

In another application, Radiomics-based machine learning algorithms have been shown to assist significantly in the

preoperative differential diagnosis between germinoma and choroid plexus papilloma . These two types of primary

intracranial tumors often present with overlapping clinical manifestations and radiological features, yet they require

markedly different treatment modalities. In addressing this diagnostic conundrum, high-performance prediction models

have been developed using sophisticated feature selection methodologies and classifiers. These models suggest that

Radiomics can offer a non-invasive diagnostic strategy with substantial reliability.

Notably, the application of Radiomics and machine learning in these scenarios holds the promise of revolutionizing the

approach to image-based diagnosis and personalized clinical decision making. By leveraging advanced computational

techniques to analyze complex, high-dimensional radiographic data, Radiomics provides a more nuanced understanding

of tumor characteristics and treatment responses. This computational approach thereby opens avenues for more

accurate, timely, and individualized therapeutic strategies, significantly enhancing the quality of patient care in oncological

settings.
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In the realm of skull base neurosurgery, machine learning (ML) methods, including neural network models (NNs) (Figure
1), have been rigorously applied to a comprehensive, multi-center, prospective database to predict the occurrence of

Cerebrospinal Fluid Rhinorrhoea (CSFR) following endonasal surgical procedures . The predictive capabilities of NNs

surpass those of traditional statistical models and other ML techniques in accurately forecasting CSFR events. Notably,

NNs have also revealed intricate relationships between specific risk factors and surgical repair techniques that influence

CSFR, relationships that remained elusive when examined through conventional statistical approaches. As these

predictive models continue to evolve through the integration of more extensive and granular datasets, refined NN

architectures, and external validation processes, they hold the promise of significantly impacting future surgical decision

making. Such next-generation models may provide invaluable support for more personalized patient counseling and

tailored treatment plans.

Figure 1. Mechanisms of neural network processing are shown. Input layer refers to heterogenous data which will be

analyzed by the neural network incorporated algorithms. Further, output information is obtained, offering new avenues for

biomedical fields.

Regarding automated image segmentation in surgical navigation applications, although there is a high correlation

between the automated segmentation and the anatomical landmarks in question, the Dice Coefficient (DC)—a measure

commonly used to assess the performance of the segmentation task—was not deemed to be particularly high . Various

factors contribute to this finding, including the complexity of anatomical pathways, the absence of clearly delineated

contours in certain regions, and inherent variations arising from manual segmentation. These limitations cast doubt on the

utility of the DC as a standalone metric for objectively evaluating the performance of this specific task. However, the low

average Hausdorff Distance (HD) on the testing dataset better encapsulates the high accuracy of the automated

segmentation, bolstering its credibility for applications such as surgical navigation.

In summary, the application of machine learning, and particularly neural networks, appears to be a game-changer in

predicting complex clinical outcomes such as CSFR following skull base neurosurgery. Meanwhile, automated image

segmentation remains a challenging task, warranting a more nuanced approach to performance assessment than merely

relying on singular statistical measures such as the Dice Coefficient. These advancements signify not only the growing

impact of computational methods in medicine but also the necessity for ongoing refinement and validation to ensure these

techniques meet the highest standards of clinical efficacy and safety.

References

1. Alaraj, A.; Lemole, M.; Finkle, J.; Yudkowsky, R.; Wallace, A.; Luciano, C.; Banerjee, P.; Rizzi, S.; Charbel, F. Virtual
reality training in neurosurgery: Review of current status and future applications. Surg. Neurol. Int. 2011, 2, 52.

[23]

[24]



2. Rosahl, S.; Gharabaghi, A.; Hubbe, U.; Shahidi, R.; Samii, M. Virtual Reality Augmentation in Skull Base Surgery. Skull
Base 2006, 16, 059–066.

3. Liu, W.P.; Azizian, M.; Sorger, J.; Taylor, R.H.; Reilly, B.K.; Cleary, K.; Preciado, D. Cadaveric Feasibility Study of da
Vinci Si–Assisted Cochlear Implant With Augmented Visual Navigation for Otologic Surgery. JAMA Otolaryngol. Neck
Surg. 2014, 140, 208.

4. Citardi, M.J.; Agbetoba, A.; Bigcas, J.-L.; Luong, A. Augmented reality for endoscopic sinus surgery with surgical
navigation: A cadaver study: Augmented reality for endoscopic sinus surgery. Int. Forum Allergy Rhinol. 2016, 6, 523–
528.

5. Marmulla, R.; Hoppe, H.; Mühling, J.; Hassfeld, S. New Augmented Reality Concepts for Craniofacial Surgical
Procedures. Plast. Reconstr. Surg. 2005, 115, 1124–1128.

6. Kawamata, T.; Iseki, H.; Shibasaki, T.; Hori, T. Endoscopic Augmented Reality Navigation System for Endonasal
Transsphenoidal Surgery to Treat Pituitary Tumors: Technical Note. Neurosurgery 2002, 50, 1393–1397.

7. Caversaccio, M.; Langlotz, F.; Nolte, L.-P.; Häusler, R. Impact of a self-developed planning and self-constructed
navigation system on skull base surgery: 10 years experience. Acta Otolaryngol. 2007, 127, 403–407.

8. Bong, J.H.; Song, H.; Oh, Y.; Park, N.; Kim, H.; Park, S. Endoscopic navigation system with extended field of view
using augmented reality technology. Int. J. Med. Robot. 2018, 14, e1886.

9. Kalaiarasan, K.; Prathap, L.; Ayyadurai, M.; Subhashini, P.; Tamilselvi, T.; Avudaiappan, T.; Infant Raj, I.; Alemayehu
Mamo, S.; Mezni, A. Clinical Application of Augmented Reality in Computerized Skull Base Surgery. Evid. Based
Complement. Alternat. Med. 2022, 2022, 1335820.

10. Grøvik, E.; Yi, D.; Iv, M.; Tong, E.; Rubin, D.; Zaharchuk, G. Deep learning enables automatic detection and
segmentation of brain metastases on multisequence MRI. J. Magn. Reson. Imaging 2020, 51, 175–182.

11. Laukamp, K.R.; Thiele, F.; Shakirin, G.; Zopfs, D.; Faymonville, A.; Timmer, M.; Maintz, D.; Perkuhn, M.; Borggrefe, J.
Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur.
Radiol. 2019, 29, 124–132.

12. Lu, C.-F.; Hsu, F.-T.; Hsieh, K.L.-C.; Kao, Y.-C.J.; Cheng, S.-J.; Hsu, J.B.-K.; Tsai, P.-H.; Chen, R.-J.; Huang, C.-C.; Yen,
Y.; et al. Machine Learning–Based Radiomics for Molecular Subtyping of Gliomas. Clin. Cancer Res. 2018, 24, 4429–
4436.

13. Varghese, B.A.; Cen, S.Y.; Hwang, D.H.; Duddalwar, V.A. Texture Analysis of Imaging: What Radiologists Need to
Know. Am. J. Roentgenol. 2019, 212, 520–528.

14. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278,
563–577.

15. Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn,
I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA. Cancer J. Clin. 2019, 69,
127–157.

16. Kickingereder, P.; Burth, S.; Wick, A.; Götz, M.; Eidel, O.; Schlemmer, H.-P.; Maier-Hein, K.H.; Wick, W.; Bendszus, M.;
Radbruch, A.; et al. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with
Improved Performance over Established Clinical and Radiologic Risk Models. Radiology 2016, 280, 880–889.

17. Kniep, H.C.; Madesta, F.; Schneider, T.; Hanning, U.; Schönfeld, M.H.; Schön, G.; Fiehler, J.; Gauer, T.; Werner, R.;
Gellissen, S. Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology 2019, 290, 479–487.

18. Zhang, B.; Tian, J.; Dong, D.; Gu, D.; Dong, Y.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Radiomics Features of
Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2017,
23, 4259–4269.

19. Wu, S.; Zheng, J.; Li, Y.; Yu, H.; Shi, S.; Xie, W.; Liu, H.; Su, Y.; Huang, J.; Lin, T. A Radiomics Nomogram for the
Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer. Clin. Cancer Res. 2017, 23, 6904–6911.

20. Ortega-Martorell, S.; Olier, I.; Julià-Sapé, M.; Arús, C. SpectraClassifier 1.0: A user friendly, automated MRS-based
classifier-development system. BMC Bioinform. 2010, 11, 106.

21. Buizza, G.; Paganelli, C.; D’Ippolito, E.; Fontana, G.; Molinelli, S.; Preda, L.; Riva, G.; Iannalfi, A.; Valvo, F.; Orlandi, E.;
et al. Radiomics and Dosiomics for Predicting Local Control after Carbon-Ion Radiotherapy in Skull-Base Chordoma.
Cancers 2021, 13, 339.

22. Chen, B.; Chen, C.; Zhang, Y.; Huang, Z.; Wang, H.; Li, R.; Xu, J. Differentiation between Germinoma and
Craniopharyngioma Using Radiomics-Based Machine Learning. J. Pers. Med. 2022, 12, 45.



23. CRANIAL Consortium Machine learning driven prediction of cerebrospinal fluid rhinorrhoea following endonasal skull
base surgery: A multicentre prospective observational study. Front. Oncol. 2023, 13, 1046519.

24. Neves, C.A.; Tran, E.D.; Blevins, N.H.; Hwang, P.H. Deep learning automated segmentation of middle skull-base
structures for enhanced navigation. Int. Forum Allergy Rhinol. 2021, 11, 1694–1697.

Retrieved from https://encyclopedia.pub/entry/history/show/115303


