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A vaccine-based nanoparticle (NP) delivery vehicle is the inoculum to deliver an antigen in vivo. The nanovaccine

has been a novel vaccine delivery platform in recent years. NPs function as an adjuvant to enhance the immune

response and the effect of cross-reactivity. Functional NPs in SARS-CoV-2 vaccines mainly include promoting cell

uptake of antigens, protecting antigens, and fully mimicking pathogens (like nano-virus). NPs are mainly divided

into four categories: polysaccharide NPs; lipid NPs and protein NPs; Nano-biomimetic delivery vehicles; polymer

NPs

COVID-19  nasal vaccination  nanovaccine

1. Polysaccharide Nanoparticles

Polysaccharide nanoparticles belong to a class of natural polymers composed of carbohydrate monomers

connected by glycosidic bonds . With inherent immunomodulatory, biocompatibility, biodegradability, low toxicity,

and safety characteristics, polysaccharides have attracted much attention in the preparation of nanovaccines and

nanomedicine. Polysaccharide adjuvants mainly include chitosan and its derivatives, in addition to glucan, mannan,

inulin, and Chinese medicinal herbs.

Chitosan is a cationic polysaccharide biopolymer that exists in the exoskeleton of crustaceans and is produced by

acetylation . Chitosan NPs have a large surface area, are capable of the controlled release of drugs, have

excellent antibacterial and other biological properties, are non-toxic to humans, and are environmentally friendly

and used as a drug delivery vehicle . Chitosan nanovaccines have proven that the vaccines with chitosan as

a carrier can stimulate immune responses in animals . In particular, chitosan is soluble in acidic environments

and has adhesive properties. The excellent adhesion of chitosan reduces the nasal clearance of the vaccine 

. Chitosan can prolong the retention time of drugs or vaccines and improve their efficacy. It has significant

advantages as an adjuvant for oral or nasal nanovaccines. Priscila Diniz Lopes et al.  confirmed that a chitosan-

based IBV-cs vaccine, alone or in combination with a heterologous live attenuated vaccine, can cause humoral and

cell-mediated immune responses at the primary site of virus replication and can be localized (the trachea) or in the

whole body (kidney) and provide effective protection against IBV infection. Santosh Dhakal et al.  confirmed that

chitosan NPs improve mucosal immunity and influenza vaccine protection in pigs. Mucosal immune response and

systemic immunity are generated after nasal vaccination with chitosan-based nanovaccines. Chitosan NPs are

theoretically feasible as the delivery system and adjuvant of SARS-CoV-2 nanovaccines. Adel M. Talaat et al. 

developed a quil-A-loaded chitosan (QAC) nanovaccine for COVID-19. Neutralizing antibodies and IgA were tested

in vaccinated mice. The effect of cationic chitosan-based nanovaccines in improving animal humoral immunity is
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more significant than other chitosan-based nanovaccines . The feasibility of chitosan and its derivatives as

SARS-CoV-2 nanovaccine carriers is emphasized in some reviews . Chitosan can also be associated with

other poly nanoparticles, such as association chitosan-polymers. The associated nanoparticles may be an option in

nanovaccine development .

2. Lipid Nanoparticles

2.1. Liposomes

Driven by hydrophobicity in water, self-assembled liposomes are spherical vesicles encased by at least a double

layer of phospholipids. They are highly fat-soluble and can fuse with cell membranes. Liposome-based vaccines

enter the cell by endocytosis. Liposomes were first discovered by Bangham et al. using electron microscopy in the

early 1960s  and later named “Liposome” by Sessa and Weissmann in 1968 . Generally, liposomes are

composed of different types of amphiphilic phospholipids. Combined with other lipids, liposomes can modify the

surface characteristics and electrical charge. Liposomes include multilamellar vesicles (MLV), large unilamellar

vesicles (LUV), and small unilamellar vesicles (SUV). Gregoriadis et al.  have confirmed that liposomes have

inherent adjuvant properties. Vaccinated mice produced strong antibody immune responses to the Ags (such as

diphtheria toxoid) carried. Moreover, it was found that mice vaccinated with liposome-based vaccines did not have

the side effects brought about by conventional vaccine adjuvants, such as granulomas. Most liposomes are

negatively charged, and positively charged liposomes composed of positively charged lipids can better adsorb to

the nasal mucosa . Ellen K. Wasan et al.  intranasally inoculated mice with the L-TriADJ complex coated with

cationic liposomes and produced a stronger immune response in mice. Rui Tada et al.  found that adhesion of

class B CpG ODN to DOTAP/DC-Chol liposomes in nasal vaccine preparation enhances antigen-specific immune

responses in mice. Liposomes, especially cationic liposomes, have great potential in the development of SARS-

CoV-2 nasal nanovaccines.

2.2. Other Lipid Nanoparticles

Liposomes are only an early version of the nanomedicine delivery platform. Many different lipid nanoparticles have

been developed, such as solid lipid nanoparticles, lipid nanocapsules and virosomes. These lipid nanoparticles are

used in vaccine delivery . They may provide a direction in the development of nasal nanovaccines for

SARS-CoV-2.

3. Protein Nanoparticles

3.1. Self-Assembled Proteins

Self-assembled proteins are a higher-level structure made by self-assembly of oligopeptides, nucleotides, and non-

biological amphipathic building blocks. To achieve different purposes, researchers have designed different self-

assembled proteins. Self-assembled proteins have been widely used in biomolecular engineering and biomedical
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platforms . In the field of vaccine development, self-assembling proteins can be fused with inactivated

pathogens or parts of antigens to produce safe molecular entities that can be effectively delivered to cells to induce

immune responses . The development of candidate vaccines based on protein assemblies is a powerful

strategy. Ferritin self-assembled NPs are already in clinical trials as nasal nanovaccines .

4. Nano-Biomimetic Delivery Vehicles

Nano-biomimetic delivery vehicles are generally assembled from nanomaterials with a variety of different functions.

It is more capable of delivery with nanocarriers synthesized with polymers and lipids . Nano-biomimetic delivery

vehicles are made with pathogen antigens into nanovaccines, such as virus-like particles (VLPs), a virus-derived

structure composed of one or more different molecules with the ability to self-assemble . VLPs mimic the form

and size of viruses, however, they lack genetic material, so they have high biological safety due to low infectious

doses . So far, a series of VLPs candidate vaccines against COVID-19 have been developed, and the effect

is being evaluated. Cyrielle Fougerou et al.  developed two vaccines based on capsid-like particles (CLP),

showing RBD of the SARS-CoV-2 spike protein. Furthermore, the vaccines stimulated strong virus-neutralizing

activity in mice. Jing et al.  designed a genetic vaccine encoding SARS-CoV-2 virus-like particles. This vaccine

induces a strong antiviral-like immune response in mice. Typically, VLPs require nano-biomimetic delivery vehicles

in nanovaccines . By improving the charge, size, and other characteristics of VLPs, NPs can better deliver VLPs

to the host. Zheng bin et al.  designed a nasal nanovaccine, which can induce mucosal immunity by nasal

delivery to prevent virus infection. The nanovaccine was composed of poly(I:C) mimicking viral genetic material as

adjuvant, biomimetic pulmonary surfactant liposomes as capsid structure of virus and RBDs of SARS-CoV-2 as

“spike” to completely simulate the structure of the SARS-CoV-2. NPs may be assembled with antigens to form a

SARS-CoV-2-like molecule that mimics the process of viral infection for effective vaccination.

5. Polymer Nanoparticles

Polymer NPs are nanoparticles formed by the polymerization of one or more organic substances. Poly(D,L-lactic-

co-glycolic acid), or PLGA, is the most commonly used synthetic polymer in developing nanoparticle delivery

vaccines due to its biodegradability and biocompatibility . It was originally used as a suture material for

surgery as PLGA is non-toxic and can be degraded into two safe and non-toxic monomers, lactide and glycolide 

. Later, it was found that PLGA functions as an adjuvant and an antigen delivery vehicle. As an antigen delivery

vector, PLGA can either encapsulate antigens to form nanocapsules or make antigens adhere to the surface to

form nanospheres. The nanocapsules formed by PLGA are similar to liposomal nanovesicles. The

pharmacokinetics is regulated by encapsulating the antigen in PLGA particles, and continuous and controlled

protein release is allowed to improve the immune response. The sustained release characteristics of PLGA can be

used in a single-dose vaccine, which is important for the development of the SARS-CoV-2 vaccine. Some

researchers tend to develop single-dose vaccines to achieve rapid vaccination .
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PLGA can also prevent the degradation of antigens. The preservation of antigens is considered by many

developers. PLGA-encapsulated vaccines have advantages in antigen protection and can delay the release of

antigens. Patki M. et al.  found that PLGA loaded with the anti-SARR-CoV-2 drug Remdesivir can continuously

and stably release antigen. Qingqin Tan et al.  determined that drugs with PLGA as a vector can neutralize a

variety of pro-inflammatory cytokines and effectively inhibit the activation of macrophages and neutrophils.

Inhibiting inflammation is conducive to reducing the side effects caused by the SARS-CoV-2 vaccine, which means

that a nanovaccine with PLGA as a vector is safe. As a nanoparticle, PLGA can provide a characteristic delivery

system for antigens and be used as an adjuvant . It has great prospects in the development of the SARS-

CoV-2 vaccine . In addition to PLGA, other polymer nanoparticles, such as Poly (I:C) as an agonist, also play a

similar role .
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