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The conflict between pedestrians and vehicles is an important safety issue, not only in the USA but everywhere in

the world. This issue is even worse in developing countries. Road accidents claim over 1.3 million lives annually,

which translates to more than two lives lost every minute. Shockingly, around ninety percent of these tragedies

happen in countries with limited resources. 
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autonomous vehicle  connected vehicle

1. Pedestrian Trajectory Prediction Methods

Over the last few years, numerous techniques and algorithms have surfaced for predicting pedestrian trajectories,

owing to their importance in creating a secure environment for autonomous vehicles and other applications. The

research on this topic can be broadly classified into three groups :

Physics-based models.

Planning-based models.

Pattern-based models.

1.1. Physics-Based Models

Physics-based models leverage motion properties such as speed and location to predict future movements by

applying physical laws. For example, Kim et al. utilized a Kalman filter and machine learning-based approach that

used velocity-space reasoning to compute the desired velocity of pedestrians, which achieved good performance

. Zanlungo et al. proposed a social force-based model that predicts pedestrian locations while modeling walking

behaviors using the social force paradigm and physical constraints. However, the model’s performance tended to

suffer when pedestrian density was low . A. Martinelli et al. proposed a pedestrian dead-reckoning method that

relies on step-length estimation . Using classifications of walking behavior, an individual’s step length is estimated

and used to infer their position. Similarly, W. Kang et al. demonstrated a smartphone-based method for pedestrian

position inference that uses step-length estimation-based inference. The authors found that the method was

effective in indoor environments but accrued errors over long distances . Additionally, Gao et al. developed a
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probabilistic method for indoor position estimation that relies on Wi-Fi signal fingerprints and smartphone signals,

improving accuracy and overcoming signal changes . However, most physics-based models rely on manually

specified parameters or rules, which limits their application to scenarios such as predicting trajectories in a closed

space. In contrast, researchers' proposed model (HSTGA) learns trajectory patterns from historical trajectory

profiles without relying on manually specified parameter values.

1.2. Planning-Based Models

In the realm of pedestrian trajectory prediction, planning-based models are typically geared toward reaching a

specific destination. Ziebart et al.  devised a planning-based model that incorporates a distribution of destinations

and utilized a Markov decision process to plan and predict trajectories. Their model outperformed a variable-length

Markov model in predicting 3-second trajectories . Deo and Trivedi implemented a probabilistic framework called

the variational Gaussian mixture model (VGMM)  that utilizes trajectory clustering to predict pedestrian paths.

Their model outperformed a monolithic VGMM. Rehder et al. utilized deep neural networks in their planning-based

approach, inferring a mixture density function for possible destinations to conduct goal-directed planning .

However, this method may not perform well in long-term horizon predictions. Dendorfer et al. proposed a two-

phase strategy called goal-GAN, which estimates goals and generates predicted trajectories . Yao et al.

improved the performance of their model by using a bidirectional multi-modal setting to condition pedestrian

trajectory prediction on goal estimation . Tran et al. separated their model into two sub-processes: a goal

process and a movement process, enabling good performance in long-term trajectory prediction . However,

these models’ reliance on guessing a pedestrian’s future goals may hinder their performance in longer-horizon

predictions, unlike researchers'  proposed model, which does not speculate about future goals or destinations, thus

improving prediction accuracy and generalization ability.

1.3. Pattern-Based Models

In recent years, pattern-based models have gained popularity thanks to advances in deep learning. Most studies

have focused on creating modules to learn about the social features and interactions among pedestrians, which

directly contribute to individuals’ movements. One notable model is the social Long Short-Term Memory (LSTM),

proposed by Alahi et al., which can predict human trajectories in crowded spaces with high accuracy . It

captures social interactions using a social pooling strategy to identify patterns, and it assumes that interactions

among pedestrians can be captured with pooling layers in the model’s architecture. In a comparable manner, the

authors of  implemented a distinct scaling technique to apprehend the impact of the surroundings on a particular

pedestrian. Another model, social GAN, was introduced by Gupta et al., which uses generative adversarial

networks (GAN) to learn about interaction patterns among pedestrians and predict their trajectories . This model

predicts multiple possible future trajectories and chooses the best one. Zhang et al. proposed the state refinement

module, SR-LSTM, to decode implicit social behaviors among pedestrians , whereas Zhao et al. proposed the

multi-agent tensor fusion model (MATF) to identify social and interactive relationships by aligning spatial encoding

with agent encoding . The multi-agent fusion model (MATF) synchronizes the spatial encoding of scenes with

the encoding of each agent present within the scene and then utilizes a GAN model to acquire knowledge of
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patterns and make predictions. Nikhil and Morris also presented a CNN-based model that is computationally

efficient and enables fast parallel processing, achieving competitive performance . Huang et al. extended the

temporal correlation concept to produce more socially plausible trajectories . Xu et al. devised a cutting-edge

methodology based on deep neural networks that harnesses the intricate nature of social behaviors to anticipate

pedestrian movements . The researchers deftly employ encoding schemes to distinguish the varying degrees of

influence exerted by different social interactions on the trajectories of passersby. Song et al. devised a complex

LSTM network that uses deep convolutional techniques . The algorithm utilizes tensors to represent

environmental features and incorporates a specially designed convolutional LSTM to predict sequences of

trajectories. Quan et al. introduced an innovative perspective in trajectory forecasting using a model based on Long

Short-Term Memory (LSTM) . Their approach features a distinctive LSTM mechanism that accurately identifies

pedestrians’ intentions and generates corresponding trajectory predictions. Existing models require information

from all pedestrians in the scene but do not consider the impact of surrounding vehicles and the interaction

between these vehicles and pedestrians on pedestrian trajectory prediction. Researchers' approach considers

these factors and uses minimal information and a decentralized method, only utilizing the pedestrian’s trajectory

profile for whom the prediction is being made. The model assumes that all other factors affecting the pedestrian’s

movement are unknown or uncertain, and it learns to adapt accordingly. This decentralized approach ensures that

researchers' model can provide high-quality predictions in various environments, not just crowded spaces, making

it an ideal choice for practical pedestrian safety applications.

2. Vehicle–Pedestrian Interaction

Vehicle–pedestrian interactions present a critical concern in urban environments and transportation research. In

the urbanization era, the safety of pedestrians has become a pressing matter. Academic studies have delved into

various aspects of this complex dynamic, investigating pedestrian behavior, driver awareness, and the impact of

built environments on interaction patterns. Scientists have utilized advanced approaches, such as observational

investigations, simulation techniques, and data-centric analyses, to untangle the complexities of these interactions.

The various findings have emphasized the significance of certain factors, such as pedestrian visibility, crossing

behavior, and driver response times, in determining the safety outcomes of such encounters. Understanding these

interactions is instrumental in devising effective strategies to minimize collisions and enhance pedestrian safety in

the  cities. As autonomous vehicles become more prevalent, ensuring seamless and safe interactions between

autonomous vehicles and pedestrians assumes paramount importance. Scholars have investigated the challenges

inherent in developing algorithms that can accurately predict pedestrian behavior and adapt to the dynamic nature

of urban environments. The integration of cutting-edge sensor technologies, such as LiDAR and computer vision,

has endowed autonomous vehicles with enhanced perception capabilities, enabling them to adeptly discern their

surroundings and anticipate pedestrian actions. However, the intricacies of pedestrian behavior and the diversity of

pedestrian actions continue to pose significant obstacles. Researchers have sought to address these challenges

by employing machine learning techniques and reinforcement learning algorithms to enhance pedestrian detection,

recognition, and trajectory prediction. The future of autonomous vehicle–pedestrian interaction rests on the

successful integration of advanced AI technologies and comprehensive research insights to ensure a safer and
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more efficient transportation landscape. The coexistence of a dynamic vehicular entity in proximity to a pedestrian

has been demonstrated to exert a substantial influence on pedestrian dynamics. Consequently, it constitutes a

critical consideration in the process of pedestrian trajectory modeling and prediction . The vehicle–pedestrian

interaction has been the subject of diverse modeling approaches in the extant literature, contingent upon the

employed trajectory generation model, which may encompass expert-driven or data-informed methodologies .

From a holistic standpoint, the interaction effects between vehicles and pedestrians can be classified into two main

categories: explicit and implicit modeling.

2.1. Explicit Interaction Modeling

In explicit interaction modeling approaches, the influence of a vehicle on a pedestrian’s dynamics is directly

incorporated through explicit terms within the formulation of the pedestrian’s movement . An illustration of

this can be observed in the utilization of explicit forces, as presented in the social force model, where the vehicle’s

effect on the pedestrian’s trajectory is explicitly represented . The authors of  categorized explicit modeling

approaches into four methods, namely repulsive forces, the social force model (SFM) with other collision-

avoidance strategies, direct coupling of motions, and other methods.

In the repulsive forces method, the original social force model (SFM) was proposed by Helbing and Molnar . The

focus in the original model was on pedestrians’ social interactions. However, subsequent work has extended this

model to incorporate pedestrian–vehicle interactions . These extensions propose additional forces to account

for such interactions. In these extended models, each vehicle imposes a distancing effect on pedestrians,

considering their relative proximity and direction. The impact of the relative interaction distance is encompassed in

what is commonly referred to as the decaying function . Typically, this function is chosen as an exponential

decay based on the distance . An additional component incorporated into certain formulations of social force

models (SFM) is the anisotropy function . This function accounts for the impact of various interacting

directions on the strength of the repulsive force. As an example, the model considers that a pedestrian approaching

a vehicle will experience a greater impact than another pedestrian moving away from the vehicle . Certain

works have employed circular representation for vehicles, similar to the modeling of pedestrians in SFM, but with a

notably increased radius . Different models have been proposed to account for the danger zone around a

vehicle and the interaction force experienced by pedestrians. Some models use an ellipse with one focus at the

rear of the vehicle and the other extended depending on the vehicle’s speed . Other models use a fixed ellipse

or a rectangular shape contour to enclose the vehicle, with the magnitude of the repulsive force adjusted based on

the distance and orientation of the pedestrian .

The second method in explicit modeling is the social force model in combination with other collision-avoidance

methods . In this approach, the SFM is combined with other collision-avoidance strategies to handle

potential collisions and conflicts. In , a long-range collision-avoidance method was proposed to predict

conflicts by projecting the pedestrian’s shadow and calculating the minimum speed and direction change to avoid a

collision. In , the authors presented a force that is defined to keep the pedestrian in a safe zone by modeling

their tendency to walk parallel to the vehicle. In , a decision model based on the time-to-collision parameter was
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used alongside the SFM to determine actions for different types of interactions with a vehicle. The capability of the

SFM to seamlessly link perception with action was effectively applied in  to address straightforward

reactive interactions. Nonetheless, to tackle more intricate interactions involving decision making among multiple

alternative actions, an additional game-theoretic layer was introduced above the SFM.

The third method in explicit modeling is the direct coupling of motions approach. Modeling the interactions can

involve coupling the motion equations of both agents, taking into direct account the impact of an agent’s actions on

the motion decisions of the other. Zhang et al. utilized a constant turn rate and velocity model (CTRV) to represent

the vehicle’s motion . In this proposed method, a correlation between the state of the pedestrian and the

coordinate system of the ego vehicle was created. Additionally, alternative approaches exist that explicitly consider

the vehicle’s influence on pedestrians’ future states. In , the pedestrian’s speed and direction are selected at

each time step to ensure a collision-free trajectory when their paths intersect with the vehicle. In , the impact of

the vehicle on the pedestrian’s velocity is considered by incorporating an assessment of the collision risk. In ,

Time to Collision (TTC) was applied along with the social force model to track vehicle–pedestrian interactions. In

, a factor of collaboration pertaining to pedestrians was introduced. This factor stands as a manifest interaction

component delineating the relationship between a pedestrian and a nearby vehicle.

2.2. Implicit Interaction Modeling

Conversely, the implicit interaction modeling approach leverages the vehicle’s trajectory as an additional input to

the model along with the target pedestrian’s trajectory data . These models are usually trained on real-world

scenario datasets, which helps the models learn vehicle–pedestrian interactions from these scenarios. Various

approaches have been suggested for integrating the trajectories of distinct agents within the interaction module.

These approaches encompass techniques like pooling mechanisms or utilizing graph neural networks. Some

papers that focus on predicting the trajectory of a single pedestrian from the egocentric view of a moving vehicle try

to account for the interaction between the pedestrian and the ego vehicle, using some moving features from the

vehicle in the data-driven prediction model . The interaction formulation in each of these three

models is discussed in the following subsections. Based on the literature , the implicit modeling of

vehicle–pedestrian interaction can be divided into three models, namely the pooling model, graph neural network

model, and ego vehicle–pedestrian interaction model.

A. Pooling Models

In , an occupancy grid map is constructed using the target vehicle’s or pedestrian’s position as its center.

This map is then employed to aggregate the hidden states of all adjacent agents. Within these occupancy maps,

the concealed state of all agents situated within the same grid cell is aggregated. This process constructs a tensor

that encapsulates data regarding all collaborative agents capable of influencing the forthcoming trajectory of the

pedestrian under consideration. Subsequently, this tensor is employed in conjunction with the spatial latent state of

the target agent as the primary input for the LSTM network utilized in the trajectory prediction process. In ,

Cheng et al. introduced a circular polarization occupancy representation. This method utilizes the orientation and
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B.

C.

distance of the agents relative to the target pedestrian to define the cells that are considered occupied. In , a

comprehensive iteration of these spatial feature maps was proposed. This is accomplished by partitioning the

bird’s-eye view of the scenario into distinct grid cells. Within this map, the feature representation of each agent is

seamlessly incorporated into a tensor, which accounts for the precise agent placement. Subsequently, the two-

dimensional tensor at each sequential time instant is channeled into a convolutional neural network (CNN)

architecture. Concurrently, a distinct LSTM architecture is employed to examine the temporal interdependencies

among these spatial maps as they evolve over time. In , a dual-map approach was proposed for each agent,

involving horizon and neighbor maps that encompass prioritized interactions and neighboring agents’ embedding,

respectively. These maps are processed using convolutional neural networks and their outputs are combined with

the target agent’s embedding to predict the agent’s future trajectory .

Graph Neural Network Model

In graph neural networks, spatial edges model the interaction between agents and their effect on future positions,

using message-passing and attention mechanisms to encode the importance of connected edges. The act of

extracting information from interconnected nodes in a graph and using it to enhance the representation of the node

is known as message propagation. This approach finds application in defining the influence of interacting entities

on a target pedestrian’s dynamics within graph neural networks (GNNs). Usually, these frameworks employ an

attention mechanism to capture the proportional importance of connected edges concerning the specific agent of

interest. In , a widely accepted criterion was introduced centered on spatial separation. This criterion

entails establishing a link between two agents in a graph, defined as a spatial edge, when their proximity reaches a

specified threshold distance. Although certain articles employ a set criterion to determine connected edges, others

opt to initiate with a completely connected graph . In simpler terms, this entails considering all agents present

within the scene. In , a reinforcement learning approach was used to investigate the existence of these edges

between agents. Actions entail switching the state of each edge on or off, while rewards are based on the overall

accuracy of trajectory predictions associated with the particular graph link. Several studies have employed directed

graphs instead of undirected versions to address interaction asymmetry . The authors of 

employed encoded interactions in a graph-based context to predict the short-term intentions of agents using a

probability distribution function. Then, this predicted intention, in conjunction with the inherent graph arrangement,

facilitates the future trajectory for individual agents. Several scholars have employed the graph convolutional

network (GCN), applying it directly to graphs. They formulate an adjacency matrix to represent connections within

the graph, where the matrix’s weights reflect the reciprocals of agents’ relative speeds or distances .

Other researchers have proposed alternative GNN techniques that utilize recurrent neural networks (RNNs), such

as LSTMs, to capture the time-evolving characteristics of the edges within the graph .

Ego Vehicle–Pedestrian Interaction Model

Typically, these interactions are represented by incorporating certain attributes of the ego vehicle’s movement

along with the positional sequences of the pedestrian. One common attribute employed for this purpose is the

speed of the ego vehicle, which can significantly influence the choices and movement of the pedestrian engaged in
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the interaction. In , the speed of the ego vehicle was employed to anticipate the subsequent actions

of the pedestrian within the camera’s image. Certain proposals have arisen that advocate the utilization of a

separate network to forecast the future speed of the ego vehicle. This projected speed can then be employed in

predicting the trajectories of pedestrians . Additional studies have incorporated elements such as the

pedestrian’s relative distance from the ego vehicle  or the geographical coordinates of the host vehicle’s location

 in combination with the motion attributes of other pedestrians. Kim et al. extended this approach by

incorporating the pedestrian’s viewpoint . They considered interaction aspects such as the relative positioning of

the pedestrian and the vehicle, the orientation of the pedestrian’s head in relation to the vehicle, and the speed of

the vehicle. Nonetheless, observing the scenario through the view of an ego vehicle entails that the motion

sequences of all pedestrians discussed in the aforementioned works are in relation to the relative positions. Hence,

incorporating vehicle attributes as an additional input to the model serves as a method for compensating for the

influences of a moving frame, rather than exclusively a factor related to interactions within the model.

In brief, the modeling of interactions between vehicles and pedestrians is typically an intricate undertaking, and this

intricacy is amplified in road settings lacking well-defined lanes, crosswalks, and strict traffic protocols . In ,

the authors found that there are substantial differences in pedestrian movement patterns between structured and

unstructured roads . Limited research has been conducted on the interaction between pedestrians and vehicles

in trajectory prediction on unstructured roads. Previous works have mostly focused on social interactions among

pedestrians  and interactions with the environment . However, the interaction between pedestrians

and vehicles is an equally important factor that needs to be considered. Some researchers have tried to include

vehicle information in pedestrian trajectory prediction, but their methods have limitations. Eiffert et al.  improved

pedestrian trajectory prediction by encoding interactions between pedestrians and a single vehicle using a feature

learning network called the “Graph pedestrian–vehicle Attention Network”. However, this method only considers a

single vehicle on the road, not multiple vehicles. On the other hand, Chandra et al.  and Carrasco et al. 

proposed models that can predict the trajectories of heterogeneous traffic agents, including pedestrians, but their

primary focus was on vehicles and motorcycles rather than pedestrians. Therefore, there is still a need for more

research on the interaction between pedestrians and vehicles in trajectory prediction.

3. Intelligent Vehicle Trajectory Prediction

In the realm of predicting vehicle movements, it has become increasingly evident that a more comprehensive

approach is essential. The integration of perception systems, cameras, and intelligent vehicular systems has

simplified the acquisition of data from both driving agents and the environment. Nevertheless, relying solely on a

traffic agent’s trajectory history for prediction can result in errors, particularly in intricate scenarios. Real-life driving

situations are inherently complex, and classical methods of predicting intelligent vehicle trajectories possess

limitations. These methods struggle to encompass the multifaceted ways vehicles interact with their surroundings,

especially concerning other road users like pedestrians, cyclists, and fellow drivers. Recognizing the significance of

comprehending and modeling the diverse interactions on the road proves vital for accurate trajectory prediction.

Approaches that are mindful of interactions, acknowledging inter-agent dynamics and behavioral dependencies,
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contribute to elevated prediction accuracy . Such approaches facilitate the gathering of extensive data on the

behaviors and intentions of various road users. Expanding upon the foundation of interaction-aware trajectory

prediction, the utilization of graph-based interaction reasoning employs graphs to more effectively capture the

intricate relationships and interdependencies between road users. This proves particularly valuable in scenarios

where conventional prediction models fall short, such as navigating complex intersections, unstructured road

environments, and bustling urban settings characterized by a mix of user behaviors. As cited in , intelligent

vehicle trajectory prediction models can be categorized into two primary types: interaction-aware trajectory

prediction and graph-based interaction reasoning. Researchers' decision to follow this categorization stems from a

resolute intention to enhance the fidelity, precision, and adaptability of these models.

3.1. Interaction-Aware Trajectory Prediction

Numerous studies have endeavored to enhance interaction awareness for trajectory prediction approaches by

modeling inter-agent correlations among all agents in a driving scene. The early literature on interaction awareness

employed traditional approaches, such as classical machine learning models, for example, Hidden Markov Models

(HMM), Support Vector Machines (SVM), and Bayesian networks . Nevertheless, these conventional

methodologies exhibit suboptimal performance in long-term predictions, particularly for intricate scenarios, and are

ill-suited for real-time analysis .

The employment of deep learning models, specifically recurrent neural networks (RNNs), temporal convolutional

neural networks (CNNs), and graph neural networks (GNNs), has captured the interest of scholars owing to their

effectiveness and versatility in various research fields, notably in predicting vehicle trajectories in complex settings.

Additionally, the literature proposes a variety of techniques to model the inter-agent interactions for vehicle

trajectory prediction. One such approach involves explicitly incorporating the trajectory history of the Target Agent

(TA) and its Surrounding Agents (SAs) into the model  in order to consider the impact of SAs. For

instance, Dai et al.  proposed a two-group LSTM-based RNN approach to model the interactions between the

TA and each of its neighbors and subsequently predict the future trajectory of the TA based on its trajectory history.

Another approach, TrafficPredict, was introduced by Ma et al. , where a system architecture with two layers of

LSTM recurrent units was designed to obtain the motion patterns of traffic participants and identify similar behavior

among the same group of traffic participants, such as vehicles or bicycles. These methods have limitations, as they

fail to account for the effect of the environment and traffic regulations on the TA’s behavior.

A potential alternative strategy for modeling social interactions among a large number of traffic participants in a

given scenario involves the implementation of a social pooling mechanism . This mechanism permits

neighboring agents’ LSTM units to share knowledge with one another. Alahi et al.  proposed the S-LSTM

method, which enables the recurrent units associated with SAs to connect with one another via the design of a

pooling layer between each existing LSTM cell. In this technique, the hidden states are streamlined across all

agents within an occupancy map. To effectively represent the interactions between all Scene Agents (SAs) in a

specific setting, Gupta and colleagues  introduced a novel pooling approach known as S-GAN, which relies on a

multi-layer perceptron (MLP) coupled with max pooling. The presented approach calculates a comprehensive
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pooling vector for each Temporal Attribute (TA). This vector is derived from the relative coordinates between the

TA, its Spatial Attributes (SAs), and their respective hidden states. In a related work by Deo et al. , the authors

introduced CS-LSTM, an encoder framework designed for vehicle trajectory prediction. In this approach,

convolution and max pooling procedures are utilized across a spatial grid, which accurately captures the TA’s

surroundings. Nevertheless, the representations obtained for the vehicles still lack integration with their individual

states, leading to inefficiencies in localized computations. Messaoud et al. introduced a novel approach to tackle

this problem by employing the Multi-Head Attention (MHA) pooling technique . This technique utilizes an

encoder based on LSTM to generate a vector representation for each vehicle. Then, an MHA framework is utilized

to assess the interconnections among vehicles, specifically focusing on the target vehicle and its Surrounding

Agents (SAs) within a defined spatial map. It has been experimentally validated that the implementation of an MHA

effectively minimizes the workload of localized computations. Nevertheless, these methods’ lack of efficiency in

addressing complex spatio-temporal correlations among traffic participants is a significant drawback. Additionally,

the performance of these methods can be affected by the distance used to generate the occupancy grid or the

number of SAs considered.

3.2. Graph-Based Interaction Reasoning

Recently, the research area of trajectory prediction has seen a growing interest in graph-based interaction

reasoning as an alternative approach to address the limitations of interaction-aware path prediction methods, as

discussed in the previous section. Graph-based approaches have focused on modeling interactions between

various agents within a driving scene as graphs, where nodes represent agents and edges represent inter-agent

interactions. This allows for the simultaneous consideration of spatial and temporal inter-agent correlations. In a

particular study, Diehl and colleagues employed a directed graph to model a highway-driving scenario. They

proceeded to assess and compare the effectiveness of GAT and GCN in traffic prediction, taking into account a

predetermined number of nearby vehicles . In contrast, the authors’ approach to generating a homogeneous

graph overlooks crucial factors such as vehicle dynamics and types. To address this, Li et al. proposed a method

using a homogeneous undirected graph to capture inter-vehicle interactions and employing graph convolutions to

uncover essential features within the dataset . A decoder based on LSTM is utilized to predict the future

trajectory of the vehicles. However, the technique still exhibits the previously mentioned constraint. Azadani et al.

utilized undirected spatio-temporal graphs to model inter-vehicle interactions and analyzed the trajectory history of

target vehicles and their surrounding vehicles using graph and temporal gated convolutions . The future

trajectory of the vehicle agents is then predicted using temporal convolutions applied to the extracted latent

representations. In recent research, Wu et al.  proposed an encoder–decoder architecture that takes into

account temporal interdependencies using Multi-Head Attention (MHA) and spatial interactions with graph attention

network (GAT) modules. The resulting outputs from these separate modules are then aggregated and fed into a

Long Short-Term Memory (LSTM)-based decoder. Similarly, Li et al.  introduced the STG-DAT system, which

comprises three key modules, namely feature extraction using a multi-layer perceptron (MLP), representation

extraction using a GAT as an encoder, and path generation employing Gated Recurrent Units (GRU) while

considering the kinematic constraints.
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Moreover, a recent study by Mo et al. introduced a directed graph model to analyze different groups of agents in a

driving scenario . The researchers used distinct encoders to account for the various agent types present in the

scene, as each type’s specific behavior significantly influences their future trajectory patterns. Similarly, following a

comparable approach, Sheng et al. developed a distance-dependent weighted graph to represent the Target Agent

(TA) and the neighboring vehicles . They analyzed this spatial graph using graph convolutional networks (GCN)

and employed GRU units to predict the vehicles’ future trajectory. Furthermore, an alternative approach by Gao et

al. involves constructing diverse sub-graphs for individual agents and a high-order graph to capture inter-agent

interactions . However, this method’s dense graph generation fails to account for crucial spatial and edge

features among all agents. These recent advancements in modeling temporal and spatial interactions among

agents have shown promising results in predicting future trajectories in complex environments.

References

1. Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human Motion
Trajectory Prediction: A Survey. Int. J. Robot. Res. 2020, 39, 895–935.

2. Zhang, E.; Masoud, N.; Bandegi, M.; Lull, J.; Malhan, R.K. Step Attention: Sequential Pedestrian
Trajectory Prediction. IEEE Sensors J. 2022, 22, 8071–8083.

3. Kim, S.; Guy, S.J.; Liu, W.; Wilkie, D.; Lau, R.W.H.; Lin, M.C.; Manocha, D. BRVO: Predicting
pedestrian trajectories using velocity-space reasoning. Int. J. Robot. Res. 2015, 34, 201–217.

4. Zanlungo, F.; Ikeda, T.; Kanda, T. Social force model with explicit collision prediction. EPL 2011,
93, 68005.

5. Martinelli, A.; Gao, H.; Groves, P.D.; Morosi, S. Probabilistic Context-Aware Step Length
Estimation for Pedestrian Dead Reckoning. IEEE Sensors J. 2018, 18, 1600–1611.

6. SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization. IEEE Sens.
J. 2015, 15, 15018804. Available online: https://ieeexplore.ieee.org/document/6987239 (accessed
on 5 May 2023).

7. Indoor Trajectory Prediction Algorithm Based on Communication Analysis of Built-In Sensors in
Mobile Terminals. IEEE Sens. J. 2021, 21, 21388524.

8. Ziebart, B.D.; Ratliff, N.; Gallagher, G.; Mertz, C.; Peterson, K.; Bagnell, J.A.; Hebert, M.; Dey,
A.K.; Srinivasa, S. Planning-based prediction for pedestrians. In Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–
15 October 2009; pp. 3931–3936.

9. Galata, A.; Johnson, N.; Hogg, D. Learning Variable-Length Markov Models of Behavior. Comput.
Vis. Image Underst. 2001, 81, 398–413.

[64]

[98]

[99]



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 11/18

10. Deo, N.; Trivedi, M.M. Learning and predicting on-road pedestrian behavior around vehicles. In
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6.

11. Rehder, E.; Wirth, F.; Lauer, M.; Stiller, C. Pedestrian Prediction by Planning Using Deep Neural
Networks. arXiv 2017, arXiv:1706.05904.

12. Dendorfer, P.; Ošep, A.; Leal-Taixé, L. Goal-GAN: Multimodal Trajectory Prediction Based on Goal
Position Estimation. arXiv 2020, arXiv:2010.01114.

13. Yao, Y.; Atkins, E.; Johnson-Roberson, M.; Vasudevan, R.; Du, X. BiTraP: Bi-directional
Pedestrian Trajectory Prediction with Multi-modal Goal Estimation. arXiv 2020, arXiv:2007.14558.

14. Tran, H.; Le, V.; Tran, T. Goal-driven Long-Term Trajectory Prediction. arXiv 2020,
arXiv:2011.02751.

15. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human
Trajectory Prediction in Crowded Spaces. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp.
961–971.

16. Xue, H.; Huynh, D.Q.; Reynolds, M. SS-LSTM: A Hierarchical LSTM Model for Pedestrian
Trajectory Prediction. In Proceedings of the 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1186–1194.

17. Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable
Trajectories with Generative Adversarial Networks. arXiv 2018, arXiv:1803.10892.

18. Zhang, P.; Ouyang, W.; Zhang, P.; Xue, J.; Zheng, N. SR-LSTM: State Refinement for LSTM
towards Pedestrian Trajectory Prediction. arXiv 2019, arXiv:1903.02793.

19. Zhao, T.; Xu, Y.; Monfort, M.; Choi, W.; Baker, C.; Zhao, Y.; Wang, Y.; Wu, Y.N. Multi-Agent Tensor
Fusion for Contextual Trajectory Prediction. arXiv 2019, arXiv:1904.04776.

20. Nikhil, N.; Morris, B.T. Convolutional Neural Network for Trajectory Prediction. arXiv 2018,
arXiv:1809.00696.

21. Huang, Y.; Bi, H.; Li, Z.; Mao, T.; Wang, Z. STGAT: Modeling Spatial-Temporal Interactions for
Human Trajectory Prediction. In Proceedings of the 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6271–
6280.

22. Xu, Y.; Piao, Z.; Gao, S. Encoding Crowd Interaction with Deep Neural Network for Pedestrian
Trajectory Prediction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5275–5284.



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 12/18

23. Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network. IEEE Trans. Intell.
Transp. Syst. Available online: https://ieeexplore.ieee.org/document/9043898 (accessed on 5 May
2023).

24. Quan, R.; Zhu, L.; Wu, Y.; Yang, Y. Holistic LSTM for Pedestrian Trajectory Prediction. IEEE
Trans. Image Process 2021, 30, 3229–3239.

25. Eiffert, S.; Li, K.; Shan, M.; Worrall, S.; Sukkarieh, S.; Nebot, E. Probabilistic Crowd GAN:
Multimodal Pedestrian Trajectory Prediction using a Graph Vehicle-Pedestrian Attention Network.
IEEE Robot. Autom. Lett. 2020, 5, 5026–5033.

26. Zhang, C.; Berger, C. Learning the Pedestrian-Vehicle Interaction for Pedestrian Trajectory
Prediction. arXiv 2022, arXiv:2202.05334.

27. Anvari, B.; Bell, M.G.H.; Sivakumar, A.; Ochieng, W.Y. Modelling shared space users via rule-
based social force model. Transp. Res. Part C Emerg. Technol. 2015, 51, 83–103.

28. Johora, F.T.; Müller, J.P. Modeling Interactions of Multimodal Road Users in Shared Spaces. In
Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), Maui, HI, USA, 4–7 November 2018.

29. Hesham, O.; Wainer, G. Advanced models for centroidal particle dynamics: Short-range collision
avoidance in dense crowds. Simulation 2021, 97, 529–543.

30. Prédhumeau, M.; Mancheva, L.; Dugdale, J.; Spalanzani, A. An Agent-Based Model to Predict
Pedestrians Trajectories with an Autonomous Vehicle in Shared Spaces. J. Artif. Intell. Res. 2021,
73.

31. Zhang, Z.; Fu, D. Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario.
Phys. A Stat. Mech. Its Appl. 2022, 599, 127468.

32. Golchoubian, M.; Ghafurian, M.; Dautenhahn, K.; Azad, N.L. Pedestrian Trajectory Prediction in
Pedestrian-Vehicle Mixed Environments: A Systematic Review. IEEE Trans. Intell. Transp. Syst.
2023, 1–24.

33. Helbing, D.; Molnar, P. Social Force Model for Pedestrian Dynamics. Phys. Rev. E 1995, 51,
4282–4286.

34. Yang, D.; Maroli, J.M.; Li, L.; El-Shaer, M.; Jabr, B.A.; Redmill, K.; Özguner, F.; Özguner, Ü.
Crowd Motion Detection and Prediction for Transportation Efficiency in Shared Spaces. In
Proceedings of the 2018 IEEE International Science of Smart City Operations and Platforms
Engineering in Partnership with Global City Teams Challenge (SCOPE-GCTC), Porto, Portugal,
10–13 April 2018; pp. 1–6.

35. Borsche, R.; Meurer, A. Microscopic and macroscopic models for coupled car traffic and
pedestrian flow. J. Comput. Appl. Math. 2019, 348, 356–382.



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 13/18

36. Yang, D.; Özgüner, Ü.; Redmill, K. A Social Force Based Pedestrian Motion Model Considering
Multi-Pedestrian Interaction with a Vehicle. ACM Trans. Spat. Algorithms Syst. 2020, 6, 1–27.

37. Yang, D.; Kurt, A.; Redmill, K.; Özgüner, Ü. Agent-based microscopic pedestrian interaction with
intelligent vehicles in shared space. In Proceedings of the 2nd International Workshop on Science
of Smart City Operations and Platforms Engineering, Pittsburgh, PA, USA, 18–21 April 2017; pp.
69–74.

38. Anvari, B.; Bell, M.G.H.; Angeloudis, P.; Ochieng, W.Y. Long-range Collision Avoidance for Shared
Space Simulation based on Social Forces. Transp. Res. Procedia 2014, 2, 318–326.

39. Yang, D.; Özgüner, Ü.; Redmill, K. Social Force Based Microscopic Modeling of Vehicle-Crowd
Interaction. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu,
China, 26–30 June 2018; pp. 1537–1542.

40. Rinke, N.; Schiermeyer, C.; Pascucci, F.; Berkhahn, V.; Friedrich, B. A multi-layer social force
approach to model interactions in shared spaces using collision prediction. Transp. Res. Procedia
2017, 25, 1249–1267.

41. Johora, F.T.; Müller, J.P. On transferability and calibration of pedestrian and car motion models in
shared spaces. Transp. Lett. 2021, 13, 172–182.

42. Johora, F.T.; Müller, J.P. Zone-Specific Interaction Modeling of Pedestrians and Cars in Shared
Spaces. Transp. Res. Procedia 2020, 47, 251–258.

43. Zhang, L.; Yuan, K.; Chu, H.; Huang, Y.; Ding, H.; Yuan, J.; Chen, H. Pedestrian Collision Risk
Assessment Based on State Estimation and Motion Prediction. IEEE Trans. Veh. Technol. 2022,
71, 98–111.

44. Jan, Q.H.; Kleen, J.M.A.; Berns, K. Self-aware Pedestrians Modeling for Testing Autonomous
Vehicles in Simulation. In Proceedings of the 6th International Conference on Vehicle Technology
and Intelligent Transport Systems, Prague, Czech Republic, 2–4 August 2023; pp. 577–584.
Available online: https://www.scitepress.org/Link.aspx?doi=10.5220/0009377505770584
(accessed on 7 August 2023).

45. Anderson, C.; Vasudevan, R.; Johnson-Roberson, M. Off The Beaten Sidewalk: Pedestrian
Prediction In Shared Spaces For Autonomous Vehicles. arXiv 2020, arXiv:2006.00962.

46. Kabtoul, M.; Spalanzani, A.; Martinet, P. Towards Proactive Navigation: A Pedestrian-Vehicle
Cooperation Based Behavioral Model. In Proceedings of the 2020 IEEE International Conference
on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6958–6964.

47. Carrasco, S.; Llorca, D.F.; Sotelo, M.Á. SCOUT: Socially-COnsistent and UndersTandable Graph
Attention Network for Trajectory Prediction of Vehicles and VRUs. arXiv 2021, arXiv:2102.06361.



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 14/18

48. Bi, H.; Fang, Z.; Mao, T.; Wang, Z.; Deng, Z. Joint Prediction for Kinematic Trajectories in Vehicle-
Pedestrian-Mixed Scenes. In Proceedings of the 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10382–
10391.

49. Rasouli, A.; Kotseruba, I.; Kunic, T.; Tsotsos, J. PIE: A Large-Scale Dataset and Models for
Pedestrian Intention Estimation and Trajectory Prediction. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019; pp. 6261–6270.

50. Santos, A.C.D.; Grassi, V. Pedestrian Trajectory Prediction with Pose Representation and Latent
Space Variables. In Proceedings of the 2021 Latin American Robotics Symposium (LARS), 2021
Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE),
Natal, Brazil, 11–15 October 2021; pp. 192–197.

51. Yin, Z.; Liu, R.; Xiong, Z.; Yuan, Z. Multimodal Transformer Networks for Pedestrian Trajectory
Prediction. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, Montreal, QC, Canada, 7–15 August 2021; pp. 1259–1265.

52. Rasouli, A.; Rohani, M.; Luo, J. Bifold and Semantic Reasoning for Pedestrian Behavior
Prediction. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 15580–15590.

53. Cheng, H.; Liao, W.; Yang, M.Y.; Sester, M.; Rosenhahn, B. MCENET: Multi-Context Encoder
Network for Homogeneous Agent Trajectory Prediction in Mixed Traffic. arXiv 2020,
arXiv:2002.05966.

54. Hassan, M.A.; Khan, M.U.G.; Iqbal, R.; Riaz, O.; Bashir, A.K.; Tariq, U. Predicting humans future
motion trajectories in video streams using generative adversarial network. Multimed. Tools Appl.
2021.

55. Wang, Y.; Chen, S. Multi-Agent Trajectory Prediction With Spatio-Temporal Sequence Fusion.
IEEE Trans. Multimed. 2023, 25, 13–23.

56. Chandra, R.; Bhattacharya, U.; Bera, A.; Manocha, D. TraPHic: Trajectory Prediction in Dense
and Heterogeneous Traffic Using Weighted Interactions. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20
June 2019; pp. 8475–8484.

57. Chandra, R.; Bhattacharya, U.; Roncal, C.; Bera, A.; Manocha, D. RobustTP: End-to-End
Trajectory Prediction for Heterogeneous Road-Agents in Dense Traffic with Noisy Sensor Inputs.
arXiv 2019, arXiv:1907.08752.

58. Girase, H.; Gang, H.; Malla, S.; Li, J.; Kanehara, A.; Mangalam, K.; Choi, C. LOKI: Long Term and
Key Intentions for Trajectory Prediction. arXiv 2021, arXiv:2108.08236.



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 15/18

59. Li, J.; Ma, H.; Zhang, Z.; Li, J.; Tomizuka, M. Spatio-Temporal Graph Dual-Attention Network for
Multi-Agent Prediction and Tracking. IEEE Trans. Intell. Transp. Syst. 2021, 23, 21954051.

60. Hu, Y.; Chen, S.; Zhang, Y.; Gu, X. Collaborative Motion Prediction via Neural Motion Message
Passing. arXiv 2020, arXiv:2003.06594.

61. Li, J.; Yang, F.; Ma, H.; Malla, S.; Tomizuka, M.; Choi, C. RAIN: Reinforced Hybrid Attention
Inference Network for Motion Forecasting. arXiv 2021, arXiv:2108.01316.

62. Zhang, X.; Zhang, W.; Wu, X.; Cao, W. Probabilistic trajectory prediction of heterogeneous traffic
agents based on layered spatio-temporal graph. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
2021, 235, 2413–2424.

63. Su, Y.; Du, J.; Li, Y.; Li, X.; Liang, R.; Hua, Z.; Zhou, J. Trajectory Forecasting Based on Prior-
Aware Directed Graph Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2022, 23,
16773–16785.

64. Mo, X.; Huang, Z.; Xing, Y.; Lv, C. Multi-Agent Trajectory Prediction With Heterogeneous Edge-
Enhanced Graph Attention Network. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21948356.

65. Men, Q.; Shum, H.P.H. PyTorch-based implementation of label-aware graph representation for
multi-class trajectory prediction. Softw. Impacts 2022, 11, 100201.

66. Rainbow, B.A.; Men, Q.; Shum, H.P.H. Semantics-STGCNN: A Semantics-guided Spatial-
Temporal Graph Convolutional Network for Multi-class Trajectory Prediction. arXiv 2021.

67. Li, Z.; Gong, J.; Lu, C.; Yi, Y. Interactive Behavior Prediction for Heterogeneous Traffic
Participants in the Urban Road: A Graph-Neural-Network-Based Multitask Learning Framework.
IEEE/ASME Trans. Mechatronics 2021, 26, 1339–1349.

68. Cai, Y.; Dai, L.; Wang, H.; Chen, L.; Li, Y.; Sotelo, M.A.; Li, Z. Pedestrian Motion Trajectory
Prediction in Intelligent Driving from Far Shot First-Person Perspective Video. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 5298–5313.

69. Herman, M.; Wagner, J.; Prabhakaran, V.; Möser, N.; Ziesche, H.; Ahmed, W.; Bürkle, L.;
Kloppenburg, E.; Gläser, C. Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features. arXiv 2021, arXiv:2012.08418.

70. Ridel, D.A.; Deo, N.; Wolf, D.; Trivedi, M.M. Understanding Pedestrian-Vehicle Interactions with
Vehicle Mounted Vision: An LSTM Model and Empirical Analysis. arXiv 2019, arXiv:1905.05350.

71. Kim, K.; Lee, Y.K.; Ahn, H.; Hahn, S.; Oh, S. Pedestrian Intention Prediction for Autonomous
Driving Using a Multiple Stakeholder Perspective Model. In Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24
October–24 January 2020; pp. 7957–7962.



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 16/18

72. Jyothi, R.; Mahalakshmi, K.; Vaishnavi, C.K.; Apoorva, U.; Nitya, S. Driver Assistance for Safe
Navigation Under Unstructured Traffic Environment. In Proceedings of the 2019 Global
Conference for Advancement in Technology (GCAT), Bangalore, India, 18–20 October 2019; pp.
1–5.

73. Kerscher, S.; Balbierer, N.; Kraust, S.; Hartmannsgruber, A.; Müller, N.; Ludwig, B. Intention-
based Prediction for Pedestrians and Vehicles in Unstructured Environments. In Proceedings of
the 4th International Conference on Vehicle Technology and Intelligent Transport Systems,
Funchal, Madeira, Portugal, 27–29 April 2018; SCITEPRESS—Science and Technology
Publications: Setúbal, Portugal, 2018; pp. 307–314.

74. Golchoubian, M.; Ghafurian, M.; Azad, N.L.; Dautenhahn, K. Characterizing Structured Versus
Unstructured Environments Based on Pedestrians’ and Vehicles’ Motion Trajectories. In
Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation
Systems (ITSC), Macau, China, 8–12 October 2022; pp. 2888–2895.

75. Mohamed, A.; Qian, K.; Elhoseiny, M.; Claudel, C. Social-STGCNN: A Social Spatio-Temporal
Graph Convolutional Neural Network for Human Trajectory Prediction. arXiv 2020,
arXiv:2002.11927.

76. Sadeghian, A.; Kosaraju, V.; Sadeghian, A.; Hirose, N.; Rezatofighi, S.H.; Savarese, S. SoPhie:
An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints. arXiv 2018,
arXiv:1806.01482.

77. Manh, H.; Alaghband, G. Scene-LSTM: A Model for Human Trajectory Prediction. arXiv 2019,
arXiv:1808.04018.

78. Chandra, R.; Guan, T.; Panuganti, S.; Mittal, T.; Bhattacharya, U.; Bera, A.; Manocha, D.
Forecasting Trajectory and Behavior of Road-Agents Using Spectral Clustering in Graph-LSTMs.
arXiv 2020, arXiv:1912.01118.

79. Azadani, M.N.; Boukerche, A. STAG: A novel interaction-aware path prediction method based on
Spatio-Temporal Attention Graphs for connected automated vehicles. Ad. Hoc. Netw. 2023, 138,
103021.

80. Agamennoni, G.; Nieto, J.I.; Nebot, E.M. A bayesian approach for driving behavior inference. In
Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9
June 2011; pp. 595–600.

81. Brand, M.; Oliver, N.; Pentland, A. Coupled hidden Markov models for complex action recognition.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 994–999.

82. Gindele, T.; Brechtel, S.; Dillmann, R. A probabilistic model for estimating driver behaviors and
vehicle trajectories in traffic environments. In Proceedings of the 13th International IEEE



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 17/18

Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp.
1625–1631.

83. Liebner, M.; Baumann, M.; Klanner, F.; Stiller, C. Driver intent inference at urban intersections
using the intelligent driver model. In Proceedings of the 2012 IEEE Intelligent Vehicles
Symposium, Madrid, Spain, 3–7 June 2012; pp. 1162–1167.

84. A Survey on Motion Prediction and Risk Assessment for Intelligent Vehicles. Robomech J. 2014,
1, 1. Available online: https://robomechjournal.springeropen.com/articles/10.1186/s40648-014-
0001-z (accessed on 7 May 2023).

85. Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction. IEEE Access
2019, 7, 38287–38296. Available online: https://ieeexplore.ieee.org/document/8672889 (accessed
on 7 May 2023).

86. Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; Manocha, D. TrafficPredict: Trajectory Prediction
for Heterogeneous Traffic-Agents. arXiv 2019, arXiv:1811.02146.

87. Ding, W.; Shen, S. Online Vehicle Trajectory Prediction using Policy Anticipation Network and
Optimization-based Context Reasoning. arXiv 2019, arXiv:1903.00847.

88. Koschi, M.; Althoff, M. Set-Based Prediction of Traffic Participants Considering Occlusions and
Traffic Rules. IEEE Trans. Intell. Veh. 2021, 6, 249–265.

89. Ding, W.; Chen, J.; Shen, S. Predicting Vehicle Behaviors Over An Extended Horizon Using
Behavior Interaction Network. arXiv 2019, arXiv:1903.00848.

90. Deo, N.; Trivedi, M.M. Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver
based LSTMs. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu,
China, 26–30 June 2018; pp. 1179–1184.

91. Deo, N.; Trivedi, M.M. Convolutional Social Pooling for Vehicle Trajectory Prediction. arXiv 2018,
arXiv:1805.06771.

92. Messaoud, K.; Yahiaoui, I.; Verroust-Blondet, A.; Nashashibi, F. Attention Based Vehicle
Trajectory Prediction. IEEE Trans. Intell. Veh. 2021, 6, 175–185.

93. Messaoud, K.; Yahiaoui, I.; Verroust-Blondet, A.; Nashashibi, F. Non-local Social Pooling for
Vehicle Trajectory Prediction. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium
(IV), Paris, France, 9–12 June 2019; pp. 975–980.

94. Diehl, F.; Brunner, T.; Le, M.T.; Knoll, A. Graph Neural Networks for Modelling Traffic Participant
Interaction. arXiv 2019, arXiv:1903.01254.

95. Li, X.; Ying, X.; Chuah, M.C. GRIP: Graph-based Interaction-aware Trajectory Prediction. In
Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland,
New Zealand, 27–30 October 2019; pp. 3960–3966.



Trajectory Prediction of Vehicle–Pedestrian and Vehicle–Pedestrian Interactions | Encyclopedia.pub

https://encyclopedia.pub/entry/49193 18/18

96. Azadani, M.N.; Boukerche, A. An Interaction-Aware Vehicle Behavior Prediction for Connected
Automated Vehicles. In Proceedings of the ICC 2022—IEEE International Conference on
Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 279–284.

97. Wu, Y.; Chen, G.; Li, Z.; Zhang, L.; Xiong, L.; Liu, Z.; Knoll, A. HSTA: A Hierarchical Spatio-
Temporal Attention Model for Trajectory Prediction. IEEE Trans. Veh. Technol. 2021, 70, 11295–
11307.

98. Sheng, Z.; Xu, Y.; Xue, S.; Li, D. Graph-Based Spatial-Temporal Convolutional Network for
Vehicle Trajectory Prediction in Autonomous Driving. IEEE Trans. Intell. Transport. Syst. 2022, 23,
17654–17665.

99. Gao, J.; Sun, C.; Zhao, H.; Shen, Y.; Anguelov, D.; Li, C.; Schmid, C. VectorNet: Encoding HD
Maps and Agent Dynamics from Vectorized Representation. arXiv 2020, arXiv:2005.04259.

Retrieved from https://encyclopedia.pub/entry/history/show/111347


