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Unmanned aerial vehicles (UAVs) are platforms that have been increasingly used over the last decade to collect

data for forest insect pest and disease (FIPD) monitoring. These machines provide flexibility, cost efficiency, and a

high temporal and spatial resolution of remotely sensed data. 

insect pest and disease monitoring  forest  unmanned aerial vehicles  remote sensing

1. Introduction

Forests play a fundamental role in human well-being . They are crucial carbon pools , contributing to mitigating

the impacts of climate change  while ensuring important economic and social benefits, providing soil and water

protection, and many other relevant environmental services .

In recent decades, changes in the frequency and severity of meteorological events seem to be related to a

concomitant drop in the vitality of forests, namely with the outbreak of new insect pests and diseases . These

environmental disturbances can facilitate a change in the frequency of the occurrence of forest pests , which

undoubtedly impacts the development, survival, reproduction, and dissemination of the species . Insects have

been recognized as the first indicators of climate change . Reducing forest degradation and increasing its

resilience involves managing and preventing these stressors and disturbing agents . In this context, accurate

and timely forest health monitoring is needed to mitigate climate change and support sustainable forest

management .

Field sampling and symptom observation on foliage and trunks are the main methods to identify and register forest

pests and diseases . When remotely sensed data with high spatial and spectral resolution are collected at

ideal times, people can differentiate canopy reflectance signals from noise in forests affected by pests and

diseases . Traditional field surveys based on forest inventories and observations are restricted by small area

coverage and subjectivity . However, when combined with unmanned aerial vehicles (UAVs), spatial coverage

can be expanded, response time minimized, and the costs of monitoring forested areas reduced. UAV systems

provide images of high spatial resolution and can obtain updated and timely data with different sensors . In

addition, they can complement the already well-known and explored satellites with airborne remote sensing

capabilities .
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UAVs can also be a valuable field data source to calibrate and validate remote sensing monitoring systems .

UAVs offer automatic movement and navigation, support different sensors, provide safe access to difficult

locations, and enable data collection under cloudy conditions . In addition, these systems can be operated to

monitor specific phenological phases of plants or during pest/disease outbreaks . In this sense, UAVs are

versatile, flexible, and adaptable to different contexts . Despite the relevant advantageous characteristics of

UAVs, some limitations can also be identified, such as limited area coverage, battery duration, payload weight, and

local regulations .

Several literatures have already provided critical aspects related to the application of UAVs to forest insect pest

and disease (FIPD) monitoring (Table 1).

Table 1. Unmanned aerial vehicle (UAV) remote sensing for forest insect pests and diseases.
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No. Ref. Year Title Journal Contents

1 2017
Forestry applications of UAVs

in Europe: a review

International
Journal of

Remote Sensing

A review of UAV-based forestry
applications and aspects of

regulations in Europe. Three studies
about FIPDs were reviewed.

2 2017

Hyperspectral Imaging: A
Review on UAV-Based

Sensors, Data Processing
and Applications for

Agriculture and Forestry

Remote Sensing

A review on UAV-based hyperspectral
sensors, data processing, and
applications for agriculture and

forestry. Three studies about FIPDs
were reviewed.

3 2020

Remotely piloted aircraft
systems and forests: a global

state of the art and future
challenges

Canadian
Journal of Forest

Research

A review of UAV-based forestry
applications. Six studies about FIPDs

were reviewed.

4 2020

Forestry Remote Sensing
from Unmanned Aerial

Vehicles: A Review Focusing
on the Data, Processing and

Potentialities

Remote Sensing

A review focusing on data,
processing, and potentialities. It

covers all types of procedures and
provides examples. Nine studies

about FIPDs were reviewed.

5 2021

Recent Advances in
Unmanned Aerial Vehicles
Forest Remote Sensing—A
Systematic Review. Part II:

Research Applications

Forests

A systematic review of UAV system
solutions, technical advantages,

drawbacks of the technology, and
considerations on technology transfer.
Seventeen studies about FIPDs were

reviewed.

6 2021

The Role of Remote Sensing
for the Assessment and

Monitoring of Forest Health: A
Systematic Evidence

Synthesis

Forests

A systematic evidence synthesis
about forest health issues with

reference to different remote sensing
platforms and techniques. Ten studies

about UAV–FIPDs were reviewed.
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2. Unmanned Aerial Vehicles in Forest Monitoring

2.1. UAV and Sensor Types

2.1.1. UAV Types

Figure 1 shows the circular packing graph where each circle is a group of UAV types considering the number of

propellers and architecture. The bubbles inside the circles represent the sub-groups. Each bubble’s size is

proportional to the UAV categories used in the studies.
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Figure 1. Summary of UAV types and model brands identified in the studies.

Regarding the models used by the number of propellers, the quadcopter model DJI Phantom 4 Pro was used in

30% of the studies and DJI Phantom 3 in 14%. With regard to octocopters, the most used models were the DJI

S1000 (25%), Arealtronics (25%), and the MicroKopter Droidwors AD-8 (25%). Thirteen percent made no

distinction based on the model used. The hexacopter DJI Matrice 600 model was used in 36% of the works. Finally,

in the fixed-wing segment, the most popular was the eBee Sense Fly model with 71% usage, followed by the Quest

UAV Qpod (14%) and DB-2 (14%).

Regarding the choice of platform, the most widely adopted was the rotary-wing, which stands out due to its

flexibility, versatility, maneuverability, and its ability to hover, offering a much easier automated experience .

Fixed-wing drones are more efficient, stable in crosswind flights, and have short flight times per unit of a mapped

area . However, they are less versatile for making small flights when compared with rotary-wing drones. In
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addition, rotary-wing drones are more suitable for mapping small and complex sites, while fixed-wing drones are

more appropriate for covering more extensive areas . Conversely, a faster vehicle may have issues mapping

small objects and insufficient overlap . In spite of this, both UAV types offer the possibility to collect data from

short intervals and at a local scale, which is relevant for multitemporal studies . Notably, the preference for

quadcopters may be related to the low-cost acquisition, the wide availability on the market, and the assessment of

FIPD in small areas . For example, the DJI Phantom series was the most frequently used in this segment. The

hexacopters and octocopters from the DJI series choice were due to the payload capabilities in the remaining

studies. Finally, eBee Sense Fly stands out for its maturity in the market. The arguments presented indicate that

rotary-wing drones are the most suitable for FIPD monitoring. However, more comparative studies are needed to

support the appropriate UAV architecture for this forestry application. Despite these facts, platform choice depends

on the survey requirements, the budget, and the experience of the researcher or practitioner. An important point to

mention is the market offer of hybrid VTOL (vertical take-off and landing), of which the only disadvantage is the

complex system mechanism .

2.1.2. Sensor Types

Figure 2a illustrates the number of remote sensing sensors, and Figure 2b shows the top 10 model camera

brands coupled with UAVs. The passive remote sensor quantities were grouped into four categories: (i) RGB, i.e.,

the simplification of multispectral red–green–blue (RGB); (ii) multispectral, including RGB, near-infrared, and red-

edge bands; (iii) hyperspectral; and finally, (iv) thermal sensors. Light detection and ranging (LiDAR) was the only

active sensor found in the studies.

Figure 2. Summary of sensor types, including: (a) types of remote sensing technology identified in each study; (b)

top 10 model camera brands.

Concerning the sensor model brands coupled with different UAV architectures, the multispectral cameras

Micasense Red-edge and Parrot Sequoia were the most widely used (Figure 2b).
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The preferred model brands of the cameras—related to the type and payload of the drones used in FIPD studies—

were the DJI Phantom camera, due to the discussed reasons, and the Sony camera, which is known for its quality

and specification . The Micasense series was the leader of the multispectral cameras, containing

five bands that capture data in the RGB, near-infrared, and red-edge regions (400–900 nm). The compact size and

weight allow it to be used in a large variety of UAV types. Another preferred multispectral sensor is the Parrot

Sequoia, which has a low price when compared with the Micasense series. This camera collects four discrete

bands: green, red, red-edge, and NIR (530–810 nm). The interest in this type of camera is due to its ability to

obtain information on the state of vegetation, thereby offering the chance calculate vegetation indices, since

vegetation is more reflective in the infrared region  for disease detection .

As for the hyperspectral sensors—Nano-Hyperspect, the Pika L. imaging spectrometer, and the UHD S185

spectrometer—these were the most used because they are adopted on a considerable variety of professional

drone types. These sensors have a much broader spectrum than multispectral sensors, which allows the

discrimination of small changes in pigmentation and minor anomalies , such as water content, and the structure

of the tree crown . For these reasons, their use is growing. Despite this, the authors of  stress that operational

efforts, storage needed due to the high dimensional data and noise, and weight  are the main constraints of this

type of sensor.

2.2. UAV Data Collection

2.2.1. Area Coverage

The largest mapped area was 16,043 ha, distributed over four sections of 3397 ha, 3825 ha, 5283 ha, and 3537

ha. The smallest area size mapped was 0.12 ha. Eighty seven percent of the studies carried out mappings up to

200 ha, and the remaining were exclusively above 200 ha. The median amount of covered area was 12.25 ha.

2.2.2. Technical Flight Parameters

Table 2 shows the flight height and GSD descriptive statistics by sensor type used in the studies. GSD results from

the combination of flight height, focal length, and sensor resolution . It is crucial to define the camera settings to

determine GSD, which corresponds to the distance between pixel centers. The highest flight altitude was 700 m,

and the lowest was 20 m performed with a hyperspectral sensor. The median of flight height for thermal sensor

was 75 m, and the highest was 100 m using multispectral sensors.

Table 2. Flight height and GSD descriptive statistics by sensor type.
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15467–15493.
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  Flight Height (m) GSD (m)
Sensor Type No. Max Min Median Max Min Median

RGB 29 700 30 90 0.080 0.015 0.028

Multispectral 27 200 50 100 0.170 0.020 0.070
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In terms of GSD, the maximum value was 0.98 m with the thermal sensor, and the minimum was 0.015 m, acquired

by an RGB sensor. The median flight height for thermal sensors’ was 75 m, and the highest was 100 m for the

multispectral sensors. The RGB sensors’ median GSD was 0.028 m, and the highest was 0.211 m with the thermal

sensors.

2.3. Data Processing and Analytical Methods

2.3.1. Spatial Unit Analysis

Object-based approach and pixel-based approach are commonly used methods. As a minimal unit in a digital

image, pixels may be used for every scale study. However, only spectral properties are considered in analytical

methods, while object-based approaches are performed using segmentation approaches that group objects based

on statistical or feature similarities. This approach is mainly performed before feature extraction and applying

classifiers, since these methods cannot add contextual information .

2.3.2. Segmentation of Single Tree Objects

Table 3 summarizes the segmentation single tree methods.

Table 3. Summary of segmentation single tree methods in the studies.
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Segmentation
Single Tree Method Synopsis Studies

Manually

Manually segmented
trees

Digitalization of each tree crown above imagery
using GIS software.

Local maxima filter
and Buffer

Local maxima filter within a rasterized CHM to detect
the treetops, then a buffer applied on the treetop

using GIS software.

Raster-based
Mean shift algorithm

GEOBIA method. Multispectral image segmentation
using ArcGIS segment mean shift tool.

Multiresolution
segmentation

GEOBIA method. Multispectral image segmentation
using eCognition software multiresolution

segmentation tool.

[15][34][39]

[46][47][48]

[49][50][51]

[52][53]

[37][46][54]

[55][56]

[57]

[12][58][59]



Unmanned Aerial Vehicles in Forest Health Monitoring | Encyclopedia.pub

https://encyclopedia.pub/entry/25339 8/10

2.3.3. Feature Extraction and Selection

Table 4 summarizes the feature extraction techniques for UAV imagery applied in the studies.

Table 4. Summary of feature extraction techniques of UAV imagery applied in the studies.
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Segmentation
Single Tree Method Synopsis Studies

Local maxima filter
and mean shift

algorithm

Local maxima of a sliding window using the
brightness of the multispectral image. Then, the

select by location tool is used between treetops and
for large-scale mean shift algorithm segments

(GEOBIA).

Safonova et al.
Wavelet-based local

thresholding

Tree crown delineation using RGB images. The
steps are contrast enhancement, crown

segmentation based on wavelet transformation and
morphological operations, and boundary detection.

Safonova et al.
Treetop detection

RGB images are transformed into one grey-scale
band image; next, the grey-scale band image is

converted into a blurred image; finally, the blurred
image is converted into a binary image.

Voronoi Tesselations
Local maxima filter within a rasterized CHM

calculates the treetops and then uses a Voronoi
tessellation algorithm .

Dalponte individual
tree segmentation

Local maxima within a rasterized CHM calculates the
treetops and then uses a region-growing algorithm

for individual segmentation .

Watershed
segmentation

Vicent and Soille original algorithm . When the
CHM is inverted, tree tops or vegetation clusters look

like “basins”.

Marker-controlled watershed . Marker and
segmentation functions are used for multi-tree

identification and segmentation using rasterized
CHM .

Binary watershed analysis and the Euclidean
distance using rasterized CHM or NIR band.

Hyyppä et al.  methodology.

Nyguen Treetops in
nDSM data

Based on pixel intensity, an iterative sliding window
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applied to eliminate treetops that are too close to

each other.

Vector-based
3D region-growing

algorithm

3D region-growing algorithm applied in a point cloud
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for treetop detection .
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single trees

Point cloud-based method with tree segmentation
using a normalized cut algorithm .
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2.3.4. Analysis Type, Algorithms, and Overall Accuracy (OA)

Figure 3 summarizes the algorithms used by the analysis method.
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construction of the 3D forest scene.
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Feature Type Description Studies

Spectral features
Statistics of original bands, ratios between bands,

vegetation indices

Textural features
Gray level co-occurrence matrix (GLCM), grey level

difference vector (GLDV)
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transformations

Hue, saturated and intensity (HSI), principal
component analysis (PCA)
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Figure 3. Summary of the algorithms used in the studies: CNN: convolutional neural network; ITCD: individual tree

crown delineation; KNN: K-nearest neighbor; LOGR: logistic regression; LR: linear regression; MLC: maximum

likelihood; MSS: multiscale segmentation; PLS: partial least squares; RF: random forest; SVM: support vector

machine; TA: thresholding analysis; XGBoost: eXtreme gradient boosting.

The classification approach is broadly used for quantifying trees. Regarding the analysis methods, most of the

studies used a classification approach. Regression studies focus on a different level of damage and provide

statistical significance for regression coefficients and the relation between classes. Statistical methods, physically

based models such as radiosity applicable to porous individual objects to calculate different vegetation variables,

and specific frameworks were also used to estimate the level of damage.
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