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Unmanned aerial vehicles (UAVS) are platforms that have been increasingly used over the last decade to collect
data for forest insect pest and disease (FIPD) monitoring. These machines provide flexibility, cost efficiency, and a

high temporal and spatial resolution of remotely sensed data.

insect pest and disease monitoring forest unmanned aerial vehicles remote sensing

| 1. Introduction

Forests play a fundamental role in human well-being [Ll. They are crucial carbon pools &, contributing to mitigating
the impacts of climate change BI4! while ensuring important economic and social benefits, providing soil and water

protection, and many other relevant environmental services =,

In recent decades, changes in the frequency and severity of meteorological events seem to be related to a
concomitant drop in the vitality of forests, namely with the outbreak of new insect pests and diseases B, These
environmental disturbances can facilitate a change in the frequency of the occurrence of forest pests 8, which
undoubtedly impacts the development, survival, reproduction, and dissemination of the species Bl. Insects have
been recognized as the first indicators of climate change . Reducing forest degradation and increasing its
resilience involves managing and preventing these stressors and disturbing agents 9. In this context, accurate
and timely forest health monitoring is needed to mitigate climate change and support sustainable forest

management 14,

Field sampling and symptom observation on foliage and trunks are the main methods to identify and register forest
pests and diseases 1112l When remotely sensed data with high spatial and spectral resolution are collected at
ideal times, people can differentiate canopy reflectance signals from noise in forests affected by pests and
diseases 13Il14] Traditional field surveys based on forest inventories and observations are restricted by small area
coverage and subjectivity 3. However, when combined with unmanned aerial vehicles (UAVs), spatial coverage
can be expanded, response time minimized, and the costs of monitoring forested areas reduced. UAV systems
provide images of high spatial resolution and can obtain updated and timely data with different sensors 26171 |n
addition, they can complement the already well-known and explored satellites with airborne remote sensing
capabilities [261[18],
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UAVs can also be a valuable field data source to calibrate and validate remote sensing monitoring systems 121,

UAVs offer automatic movement and navigation, support different sensors, provide safe access to difficult

locations, and enable data collection under cloudy conditions 29. In addition, these systems can be operated to

monitor specific phenological phases of plants or during pest/disease outbreaks 2821 |n this sense, UAVs are

versatile, flexible, and adaptable to different contexts [22. Despite the relevant advantageous characteristics of

UAVs, some limitations can also be identified, such as limited area coverage, battery duration, payload weight, and

local regulations 231,

Several literatures have already provided critical aspects related to the application of UAVs to forest insect pest

and disease (FIPD) monitoring (Table 1).

No. Ref.
1[4
2 [28]
3 [28]
4 6]
5 [27]
6 [28

Table 1. Unmanned aerial vehicle (UAV) remote sensing for forest insect pests and diseases.

Year

2017

2017

2020

2020

2021

2021

Title

Forestry applications of UAVs
in Europe: a review

Hyperspectral Imaging: A
Review on UAV-Based
Sensors, Data Processing
and Applications for
Agriculture and Forestry

Remotely piloted aircraft
systems and forests: a global
state of the art and future
challenges

Forestry Remote Sensing
from Unmanned Aerial
Vehicles: A Review Focusing
on the Data, Processing and
Potentialities

Recent Advances in
Unmanned Aerial Vehicles
Forest Remote Sensing—A
Systematic Review. Part II:
Research Applications

The Role of Remote Sensing
for the Assessment and
Monitoring of Forest Health: A
Systematic Evidence
Synthesis

Journal

International
Journal of
Remote Sensing

Remote Sensing

Canadian
Journal of Forest
Research

Remote Sensing

Forests

Forests

Contents

A review of UAV-based forestry
applications and aspects of
regulations in Europe. Three studies
about FIPDs were reviewed.

A review on UAV-based hyperspectral
sensors, data processing, and
applications for agriculture and

forestry. Three studies about FIPDs
were reviewed.

A review of UAV-based forestry
applications. Six studies about FIPDs
were reviewed.

A review focusing on data,
processing, and potentialities. It
covers all types of procedures and
provides examples. Nine studies
about FIPDs were reviewed.

A systematic review of UAV system
solutions, technical advantages,
drawbacks of the technology, and
considerations on technology transfer.
Seventeen studies about FIPDs were
reviewed.

A systematic evidence synthesis
about forest health issues with
reference to different remote sensing
platforms and techniques. Ten studies
about UAV—FIPDs were reviewed.
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No. Ref. Year Title Journal Contents
) P|Iot.ed —— IEEE A literature review of UAV-based on
Systems to Identify Pests and . . o
[29] . . L Geoscience and forest pest and disease monitoring.
! 2021 Diseases in Forest Species: remote sensin Thirty-three studies about FIPDs were
The Global State of the Art . 9 Y .
magazine reviewed.

and Future Challenges

1. Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P,

| Z-OHATaRNE ASrisl VehiclE i EdtestNISHitsFifige © e cimere

Mitigation Potential of Forests. Science 2020, 368, eaaz7005.

2.1 AN ApdReRSRETYPS Sdation: Towards the Development of Globally Applicable Guidlines;

2 1Ffr%sl£\ll?$_§%%rsces Assessment Working Paper 177; Food and Agriculture Organization of the
United Nations: Rome, Italy, 2011.

FopenhaBAYS. (52 RSB ORCKNER IR AGIAG PRFRSILCIBITH AR ChHAY MRS 8t s BT of

prog?&riﬁ@_ix%i}gcture. The bubbles inside the circles represent the sub-groups. Each bubble’s size is

proportional to the UAV categories used in the studies.
4. FAO. Climate Change Guidelines for Forest Managers; FAO Forestry Paper 172; Food and

Agriculture Organization of the United Nations: Rome, Italy, 2013; p. 123.

5. FAO. Managing Forests for Climate Change; Food and Agriculture Organization of the United
Nations: Rome, Italy, 2010; p. 20.

6. Dale, V.; JOYCE, L.; Mcnulty, S.; Neilson, R.; Ayres, M.; Flannigan, M.; Hanson, P.; Irland, L.;
Lugo, A.; PETERSON, C.; et al. Climate Change and Forest Disturbances. BioScience 2001, 51,
723-734.

7. Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently
Linked to Drought across Europe. Nat. Commun. 2020, 11, 6200.

8. Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for Resilience:
Addressing the Impacts of Changing Disturbance Regimes on Forest Ecosystem Services. J.
Appl. Ecol. 2016, 53, 120-129.

9. Koricheva, J.; Castagneyrol, B. Science Direct Responses of Forest Insect Pests to Climate
Change: Not so Simple. Curr. Opin. Insect Sci. 2019, 35, 103-108.

10. Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H.
Cross-Scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics
of Bark Beetle Eruptions. BioScience 2008, 58, 501-517.

11. Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurich, M.; Huth, A.; Jung, A.; Klenke, R.;
Knapp, S.; Mollenhauer, H.; et al. Understanding Forest Health with Remote Sensing, Part Ill:
Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data
Science Approaches. Remote Sens. 2018, 10, 1120.
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12. Brovkina, O.; Cienciala, E.; Surovy, P.; Janata, P. Unmtr;tnn“sad Aerial Vehicles (UAV) for

Assessment of Qualitative Classification of Norway Spruce in Temperate Forest Stands. Geo-
Spat. Inf. Sci. 2018, 21, 12-20.

13. Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, HegeeGapdll¢in-Magganto, S.; Salbach, C.
Forecasting Potential Bark Beeile Outbreaks Based on Spruce Forest Vitality Using Hyperspectral

Remote-Sensing Technlqu&aratewermt Scales. For. Ecob,MaRag,<013, 308, 76-89.
14%
14. Gémez, C,; Alejanmﬂ"f“l‘!ﬁ?mosnla T.; Montes, F.; Pascual, C.; Ryiz, L.A.; Alvarez-Taboada, F;

Tanase, M. x‘%ﬁfuena R. Remeie,Sensiag for the Spanish Fore e 21st century: A

Review of Advances, Needs, ant®OpportéiHities. For. Syst. 2019, 2
Phantom 4 Multi

15. Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, N Dungey, H.S High Resolution
UAV Imagery forrhMasitarng Forest blaaktié dduring a Simulated PRS J.

Photogramm. Remostoe*Sens 2017, 1311?*1—14

Zefyros Oktos
16. Guimaréaes, N.; Padua, L.; Marques, P.; Silva, N%Peres E.; Sousa

from Unmanned Aerial VehitpEe A1PRES {8t EG Ccusing on the Data,
Remote Senssm?&”w,%ﬁ i

17. Poley, L.G,; McDermld G J. s&a&yotemaﬁc Review of,ﬂ"?e Fuowis:dnfluencmg the Estimation of
Vegetation Aboveground Blomass Using Unmanned Aerial Systems Remote Sens. 2020, 12,

Remote Sensing
nd Potentialities.

1052. Aerialtronics 8 DJI $1000
25% 25%

18. Klosterman, S.; Richardson, A. Observing Spring and Fall Phenaology in a Deciduous Forest with

Aerial Drone Imagery. Sensors 2017, 17, 2852. :
MicroKopter AD-8

25%
19. Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote Sensing of Forest Pest
Damage: A Review and Lessons Learned from a Canadian Perspective. Can. Entomol. 2016,
148, S296-S356.

20. Padua, L.; Vankguik;1H8ubkaad: oRAJAY. tfpeSabdaolidl bReRsdentifdaiaiteRtldAS, Sensors, and
Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens.
Re@0ding38e 2824l 894d by the number of propellers, the quadcopter model DJI Phantom 4 Pro was used in

30% of the studies and DJI Phantom 3 in 14% With regard to octocopters the most used models were the DJI

21. Rullan-Silva, C.D.; Olthoff, A.E.; Deigado de la Mata, J aares -Alonso, J.A. Remote

S1000 (25%), Arealtronics (25%?3 and the MicroKaopter Dr0|dwors &25‘@ Thlrteen percent made no
Monitoring of Forest Insect Defoliation. A Review. For. Syst. 2013 391.

distinction based on the model used. The hexacopter DJI Matrice 600 model was used in 36% of the works. Finally,

23 tafxdd-widiNsdymbhiane XddintopnaeaAcrakBebisknierrRantole Hiensing ysagicriioned Ay Revigwst
uAR et e13end Wl 2 Y i49443.

23. Manfreda, S McCabe, M.; Miller, P.; Lucas, R.; Pajuelo Madrlgal V.; Malllnls G.; Ben Dor, E.;
Re ar ing the ch 0|ce of platform the most Wldely adopted Was the rotary-wing, w hich stands out due to its
elman, Estes, L.; Ciraolo, G.; et al, On the Use of Unmanned Aerial Systems for,
flexibility, versat|||ty, maneuverability, and its ability to hover, offering a much easier automated experience 2939(31]
Environmental Monitoring. Remote Sens. 2018, 1
Fixed-wing drones are more e icient, stable in crosswind ﬂlghts and have short flight times per unit of a mapped

area 22, However, they are less versatile for making small flights when compared with rotary-wing drones. In
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24 dTidone sataryGyj rigedtoms Aay € auate suitah . fdDintae ping remSl Fan s wilin Bex Miste sehife ;fiiiglietig, drones are
moNagmobpateZialdedyAriny\iabbae @xtensivrestep ARl Catvass elfyUATstin xiioemAyRemievgsints dapping
smatievhjetesSenisin20iidie 380 B4R p- 2441 .spite of this, both UAV types offer the possibility to collect data from

P RdBE IS IR 2 BSERTe SB RS BLIR TR e EBusa, 1 VAR SRS TRAgG!
RGBS BN D Rl e Bl et o B R 8L PR e R DA RS
FIPQ in smal Eérﬁg.s'Z[%]lj/:,%,%iTBI.e’ the DJI Phantom series was the most frequently used in this segment. The

emote
hexacopters and octocopters from the DJI series choice were due to the payload capabilities in the remaining

28y EEI8HIRMY EBee e, Ky TsidMAINAM: s hasRUR. e TakeiMandagy e RaPrbsbheRBRNCIRhat
rotdINRg ARy siemangizeiests Arplahaieiie Pbihaartand Bstwe Lhallenges afeattedied to
suppBF IRE2pARPRaROUADrdHR ture for this forestry application. Despite these facts, platform choice depends

29N BH&IFIENEYR SAHISEARTLS PETUEFInang , [ke EXAAHEase CAhR EB 3G 2R A RE_CHHI RS mAR HERCKERGpINt to
meYigi b & MRYERYFRLY BENENGOl @sLigahiatie-Ribendyapdrol: RReduchdheapplyidigsyaniagfeiidhe
corppiex sysperggrechanism (35](36]

281T9r'senBoRAfsssBlanco, M.; Viana-Soto, A.; Nieto, H.; Garcia, M. The Role of Remote Sensing

for the Assessment and Monitoring of Forest Health: A Systematic Evidence Synthesis. Forests
Figg@f’a\liﬁgsfm the number of remote sensing sensors, and Figure 2b shows the top 10 model camera

brands coupled with UAVs. The passive remote sensor quantities were grouped into four categories: (i) RGB, i.e.,
2P IS IO er MRIRIRARR N 58 RIS Ay S8R eeRa M Rer iREPREEE e RRTYS Sidrrea-
edge BandeCh Fis MR mtel BRI AP R RYRENe 0 [ U St AT PR TR AR USthe ony

.Sgecies: ;J'he lobal tgte of the Art and Future Challenges. IEEE Geosci. Remote Sens. Mag.
active sensor found In the studies.

2021, 10, 2-15.

30:2Gromwell, C.; Giampaolo, J.; Hupy, J.; Miller, Z.; Chandsasekaran] A. A Systematic Review of Best
Prﬁ'es for UAS Data‘ Chﬂc’e“@f"lonlin Forestry-Related Applications. Forests 2021, 12, 957. \

Hyperspectra

31. Tmusi¢, G.; Manfreda, S5 %%%Séﬁmwf';ﬁ?mes, M.R.; (fgarnltfﬂ\?récsa?e(rf:; Ben-Dor, E Brook, A’

L iSpectrdl Phantom 3 cameraq

ra
=

§ Folinova, M.; Arranz, J.;E MeészarosydR et al. Culrent Practices in| JAS-Based-Environmental
:t_v . . ; ral The | g Mano-Hyperspec
: MonitorirglRemote Sers: 2025, 12, T001. e
E RGB and Hyperspectral o
32.8hi, Y;; Thomasson, J.A.; I\Awg,gﬁ@p:{;a; Pugh, N.2.; Rooneyyivrkij Shafian, S.; Rajan, N.; Rouze,

G. Morgan, C.L.S,; Nee“, fEedTetmal. Unmanned Aetiakdiehietes-for High=-Throughput
P RGB Multispectral and Higerspectral

henotyping and Agronomig, Research. PLoS ONE 2016, 1110159781,
£

04 " . . FabryF'érot_lnterferometer- .
33. Gen:z&lez—déerge,—lilfMartlnez-Sanchez, J.; Bueno, M.; Arias, P. U.Jr@qanﬂegdAeH%I%ystsemsﬁfeg’—
NBrbif A sphte stidnadecikifieview. Drones 2017, 1, 2. Count
(a) (b)
34. Dash, J.; Pearse, G.; Watt, M. UAV Multispectral Imagery Can Complement Satellite Data for

FigWleri®ingheyestseielity fRemaiiadirnga)pss dlehdblé sensing technology identified in each study; (b)

3‘@%%5?89&'.&%{“&&%&%% V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and

Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671—
Coricgzérémg the sensor model brands coupled with different UAV architectures, the multispectral cameras

Micasense Red-edge and Parrot Sequoia were the most widely used (Figure 2b).
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StheZaretp k¢ AtudeBordnids oFtheYemgerds-Ziadited tavadugsitioaahph@ondpr tisonrofiddyxed WFGH/dilies—
werd A\é DithAhautoDiftansdra FdeettectiRy cpelsesdSystenss aAe tos(macy 282dr8 w2idh is known for its quality
S KIBEREE Y Komarek, J.. Surovy PR R MRR A UBs AR 8111RRTLE SRORG MU
e Lenge K3bFBILEEBIAR IOE: BRI HSLRY AALRSTRTR ARSI AR O Y, The pogpac size and
weight allow it to be used in a large variety of UAV types. Another preferred multispectral sensor is the Parrot
38e AN AvMth WaNE, 15w SREOGHEn EexiRGHan Wil iRe fIQWBssParraed iy ReRIEOBNESs four discrete
bantRPYlReONES AsRbebd.lunienmR]EY@ls2BaIR). GRS HicRipth Wsing s Y -Baner ity BeesRe@rability to
obtifages iRt Methods2020 . \vE8ettin, thereby offering the chance calculate vegetation indices, since
G 2IRAIAY NP EflgeRve ndhg I arogh(paton El%é?rl_d.i??%??g‘?qlﬁwggé%]sment of Defoliation during the
Dendrolimus Tabulaeformis Tsai et Liu Disaster Outbreak Using UAV-Based Hyperspectral

As I];(T)lra éhee& eenrqsgt%ctéaelnss?rE%ﬁﬁﬁgré%TgPﬁrf;??gZérl%félfa L. imaging spectrometer, and the UHD S185

spectrometer—these were the most used because they are adopted on a considerable variety of professional

4@oryiigpdd.; Ntk SedsolLPale-W. ReIeAIBALRE thpRingWilhPisrRagcting candidatesilpr RIRRE the
discRRmatRoeNsing HelngeArtiisiphintaligenterlaehpifiesicE ringRANG ARG GnllRH%bhe structure

A Peabieegreynviih Feishagmieaions JBBYSSIHIRIRRRGTAE BisebeBetRicH for etsdhipgprerational
effog§spiaraet ieeted iR Bie Wk 9@88@8@5%&@%@%&%1%@859@I[rir?]a@@rﬁmFE‘E‘E‘ §oBRaEHOT this
tyPARKTERSHth Obs. Remote Sens. 2021, 14, 8350-8358.

43 MiJa \BData EBlREstionBrina, J.; Dvorak, P.; Vitkova, M. Unmanned Aircraft in Nature
Conservation: An Example from Plant Invasions. Int. J. Remote Sens. 2017, 38, 2177-2198.

2.2.1, Area Coverage I . :
43. Nasi, R.; Honkavaara, E.; Lyytikdinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.;

Tho/iliRpeniispkarielawks TanaganpdisiTbutdalonsinan. doddsing Ya-Rasesbb hatepmineind and7

ha. HYBeSisRRsT A dnaginenipnManaing Bark. Bagile 22898 ahT Beenb avelid3 BNt 96N%adfihgs Gp to
200145&@%154%aining were exclusively above 200 ha. The median amount of covered area was 12.25 ha.

4;. I%rd_lz_achﬁ, _I\/I.-ID#' _Mﬁngjls, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A Machine Learning Approach to
.2,2. Techn arameters .
2Detecﬁng lIgli?'le V{Ht E)lsease‘ﬂs{ng Airborne Spectral Imagery. Remote Sens. 2020, 12, 2280.

4Ebdg Zshoprsshentisridisigt a0t GRssgitiya SIRSER IS RIROr Smn ERed BRiR HES LRBVRSHSrom
the gamaRERR &l iy *&n@ﬁéﬁ%fb@%ﬁ%ﬁ%ﬁ%@@%%%dé& HHIG HRePrEPaie SYBfARetings to
detggﬁ%@%l\@big_@’cg@ﬁponds to the distance between pixel centers. The highest flight altitude was 700 m,
and the lowest was 20 m performed with a hyperspectral sensor. The median of flight height for thermal sensor

49,700 £ YRPRRIDIUR Yo PHRIBNG o S5R38 B RO Processionary Moth Defoliation Using

Unmanned Aerial Systems. Forests 2017, 8, 402.
47. Minafik, R.; LanghérFHont BRgHIRN TSRABTAARRY § RIBtiY BSAPREROS from Uas

Miuiltienactral Imanens far the Neatartinn nf Rarlk Reatla Nictiirhance in Mived Fnrecte Reamote

Flight Height (m) GSD (m)
Sensor Type No. Max Min Median Max Min Median
4 RGB 29 700 30 90 0.080 0.015 0.028 Health
Multispectral 27 200 50 100 0.170 0.020 oo7o 021,12,

1140.
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4 Flight Height (m) GSD (m) Can
Sensor Type No. Max Min Median Max Min Median
Hyperspectral 12 140 20 95 0.560 0.047 0.200

Thermal 4 122 60 75 0.980 0.150 0.211
< age

Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images.

In t&r&gg{s%&imaf%n value was 0.98 m with the thermal sensor, and the minimum was 0.015 m, acquired

by an RGB sensor. The median flight height for thermal sensors’ was 75 m, and the highest was 100 m for the

ShufRyRRsHerandahe RN aZABrE R B AVAIRE B85FAEEnd (e RALHNEZ032 077 5N B thermal
serAssessing a Novel Modelling Approach with High Resolution UAV Imagery for Monitoring Health

Status in Priority Riparian Forests. For. Ecosyst. 2021, 8, 61.

5%‘?\(LP ﬂtaLBB°9°§ﬁHagcj‘“£‘n’éﬁ'g‘°"X“9ﬁ!'BQ‘E?&?'% A Machine Learning Algorithm to Detect Pine

2_3\_/§(|_It§|30|as‘ |%?%H|‘%'R9\H'§‘¥i'lsgased Hyperspectral Imagery and LIDAR Data at the Tree Level. Int. J.
Appl. Earth Obs. Geoinf. 2021, 101, 102363.

S3PIoERse APROSE 6, B PESERL BRBIPEFhHE UM BASYaerth BRI TabiRoRRIS NAHI Grifil

MGG S EERY BErtSBi SRR A U B e My B RiS Sh A e, Y5, 0P LR e

me@oﬂa, while object-based approaches are performed using segmentation approaches that group objects based

on statistical or feature similarities. This approach is mainly performed before feature extraction and applying

HaAhddlafineiach R mRaasiQlidis: did isReRRariIfR Marsifization and Health Status Assessment for
a Mixed Broadleaf-Conifer Forest with Uas Multispectral Imaging. Remote Sens. 2020, 12, 3722.

5%'.352rh%% rnlenggb?tr(‘)r?f&"}%ﬁ%ﬁ? ;%gﬁatzs, J.C. UAV-Borne Thermal Imaging for Forest Health
TaVODEGHRG-DAteRtioR M RiBRASE e thERBQPY Temperature Increase. In International

Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences—ISPRS
Archives; Paparotitite 8l.siRamaenet, fegMenBiibolendle tRabaielods.inGiadtekitied., Rottensteiner, F.,

Briottet, X., Christophe, S., Dowman, I., Elberink, S.O., et al., Eds.; International Society for
Segmentation

; i ies 349-
Single Tree Method Synopsis Studies
[15](34](39]
E Manually segmented Digitalization of each tree crown above imagery [46][47][48] Aerial
trees using GIS software. [0
(2531 ‘or. Ecol.
Manually
Local maxima filter Lo:;]al trnaxtlma fltl;[]er wHEmﬁa rastelrlz(;ad CtI:Mtto dtetect [37][46][54]
E and Buffer e treetops, then a buffer applied on the treetop [55][56] n Tree
using GIS software.
, 3, 80.
Raster-based . . GEOBIA method. Multispectral image segmentation 57]
< Mean shift algorithm using ArcGIS segment mean shift tool. -Based
_ , , J15, 6,
Multiresolution GEOBIA method. Multispectral image segmentation
) using eCognition software multiresolution [L2)[58](59]
segmentation .
segmentation tool. )
5 b A LS B b B el LS B B Rl B bbb B LS Bt B Rt —'-"--Jn In

ion UAV Images Using Object-Oriented Classification. J. For. Res. 2021, 577.
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¢ Segmentation

Single Tree Method

Local maxima filter
and mean shift
algorithm

Safonova et al.
€ Wavelet-based local
thresholding

Safonova et al.

€ Treetop detection
€ Voronoi Tesselations
Dalponte individual
tree segmentation
€
€
Watershed
€ segmentation
€
€

Nyguen Treetops in

. DSM
UAV Imaging nbSM data

Avcahivine AfF

Vector-based . .
3D region-growing

algorithm

3D segmentation of
single trees

Synopsis

Local maxima of a sliding window using the
brightness of the multispectral image. Then, the
select by location tool is used between treetops and
for large-scale mean shift algorithm segments
(GEOBIA).

Tree crown delineation using RGB images. The
steps are contrast enhancement, crown
segmentation based on wavelet transformation and
morphological operations, and boundary detection.

RGB images are transformed into one grey-scale
band image; next, the grey-scale band image is
converted into a blurred image; finally, the blurred
image is converted into a binary image.

Local maxima filter within a rasterized CHM
calculates the treetops and then uses a Voronoi
tessellation algorithm €31,

Local maxima within a rasterized CHM calculates the
treetops and then uses a region-growing algorithm
for individual segmentation (6511661

Vicent and Soille original algorithm 681 When the
CHM is inverted, tree tops or vegetation clusters look
like “basins”.

Marker-controlled watershed 9. Marker and
segmentation functions are used for multi-tree
identification and segmentation using rasterized
CHMm I,

Binary watershed analysis and the Euclidean
distance using rasterized CHM or NIR band.

Hyyppa et al. “4 methodology.

Based on pixel intensity, an iterative sliding window
is passed over the nDSM. Finally, the refinement is
applied to eliminate treetops that are too close to
each other.

3D region-growing algorithm applied in a point cloud
(LIDAR or photogrammetric) using a built-in function
for treetop detection 8!,

Point cloud-based method with tree segmentation
using a normalized cut algorithm [z8],

Studies

[60]

(47671

[69]

(4772

[52][73]

[43]

[75]
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Table 4. Summary of feature extraction techniques of UAV imagery applied in the studies.
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The classification approach is broadly used for quantifying trees. Regarding the analysis methods, most of the
studies used a classification approach. Regression studies focus on a different level of damage and provide
statistical significance for regression coefficients and the relation between classes. Statistical methods, physically
based models such as radiosity applicable to porous individual objects to calculate different vegetation variables,
and specific frameworks were also used to estimate the level of damage.
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