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The concept of entropy constitutes, together with energy, a cornerstone of contemporary physics and related areas. It was

originally introduced by Clausius in 1865 along abstract lines focusing on thermodynamical irreversibility of macroscopic

physical processes. In the next decade, Boltzmann made the genius connection—further developed by Gibbs—of the

entropy with the microscopic world, which led to the formulation of a new and impressively successful physical theory,

thereafter named statistical mechanics. The extension to quantum mechanical systems was formalized by von Neumann

in 1927, and the connections with the theory of communications and, more widely, with the theory of information were

respectively introduced by Shannon in 1948 and Jaynes in 1957. Since then, over fifty new entropic functionals emerged

in the scientific and technological literature. The most popular among them are the additive Renyi one introduced in 1961,

and the nonadditive one introduced in 1988 as a basis for the generalization of the Boltzmann–Gibbs and related

equilibrium and nonequilibrium theories, focusing on natural, artificial and social complex systems. Along such lines,

theoretical, experimental, observational and computational efforts, and their connections to nonlinear dynamical systems

and the theory of probabilities, are currently under progress. Illustrative applications, in physics and elsewhere, of these

recent developments are briefly described in the present synopsis.
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Thermodynamics is an empirical physical theory which describes relevant aspects of the behavior of macroscopic

systems. In some form or another, all large physical systems are shown to satisfy this theory. It is based on two most

relevant concepts, namely energy. The German physicist and mathematician Rudolf Julius Emanuel Clausius (1822–

1888) introduced the concept of entropy in 1865 , along rather abstract lines in fact. He coined the word from the

Greek τροπη (trope¯ ), meaning transformation, turning, change. Clausius seemingly appreciated the phonetic and

etymological consonance with the word ’energy’ itself, from the Greek ευεργεια (energeia), meaning activity, operation,

work. It is generally believed that Clausius denoted the entropy with the letter S in honor of the French scientist Sadi

Carnot. For a reversible infinitesimal process, the exact differential quantity dS is related to the differential heat transfer

δQreversible through dS = δQreversible /T , T being the absolute temperature. The quantity T plays the role of an

integrating factor, which transforms the differential transfer of heat (dependent on the specific path of the physical

transformation) into the exact differential quantity of entropy (path-independent). This relation was thereafter generalized

by Clausius into its celebrated inequality dS ≥ δQ/T, the equality corresponding to a reversible process. The inequality

corresponds to irreversible processes and is directly implied by the so-called Second Principle of Thermodynamics,

deeply related to our human perception of the arrow of time.

One decade later, the Austrian physicist and philosopher Ludwig Eduard Boltzmann (1844–1906) made a crucial

discovery, namely the connection of the thermodynamic entropy S with the microscopic world   . The celebrated

formula S = k ln W, W being the total number of equally probable microscopic possibilities compatible with our information

about the system, is carved in his tombstone in the Central Cemetery of Vienna. Although undoubtedly Boltzmann knew

this relation, it appears that he never wrote it in one of his papers. The American physicist, chemist and mathematician

Josiah Willard Gibbs (1839–1903) further discussed and extended the physical meaning of this connection . Their

efforts culminated in the formulation of a powerful theory, currently known as statistical mechanics. This very name was, at

the time, a deeply controversial matter. Indeed, it juxtaposes the word mechanics—cornerstone of a fully deterministic

understanding of Newtonian mechanics—and the word statistics—cornerstone of a probabilistic description, precisely

based on non-deterministic concepts. On top of that, there was the contradiction with the Aristotelian view that fluids, e.g.,

the air, belong to the mineral kingdom of nature, where there is no place for spontaneous motion. In severe variance,

Boltzmann’s interpretation of the very concept of temperature was directly related to spontaneous space-time fluctuations

of the molecules (‘atoms’) which constitute the fluid itself.
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Many important contributions followed, including those by Max Planck, Paul and Tatyana Ehrenfest, and Albert Einstein

himself. Moreover, we mention here an important next step concerning entropy, namely its extension to quantum

mechanical systems. It was introduced in 1927  by the Hungarian-American mathematician, physicist and computer

scientist János Lajos Neumann (John von Neumann; 1903–1957).

The next nontrivial advance was done in 1948 by the American electrical engineer and mathematician Claude Elwood

Shannon (1916–2001), who based on the concept of entropy his “Mathematical Theory of Communication”  . This

was the seed of what nowadays is ubiquitously referred to as the information theory, within which the American physicist

Edwin Thompson Jaynes (1922–1998) introduced the maximal entropy principle, thus establishing the connection with

statistical mechanics  . Along these lines, several generalizations were introduced, the first of them, hereafter noted

 by the Hungarian mathematician Alfréd Rényi (1921–1970) in 1961 . Various others followed in the next

few decades within the realm of information theory, cybernetics and other computer-based frames, such as the functionals

by Havrda, Charvat  , Lindhard, Nielsen  , Sharma, Taneja, Mittal . During this long maturation period, many

important issues have been punctuated. Let us mention, for instance, Jaynes’ “anthropomorphic” conceptualization of

entropy   (first pointed by E.P. Wigner), and also Landauer’s “Information is physical”  . In all cases, the entropy

emerges as a measure (a logarithmic measure for the Boltzmann–Gibbs instance) of the number of states of the system

that are accessible, or, equivalently, as a measure of our ignorance or uncertainty about the system.

In 1988, the Greek-Argentine-Brazilian physicist Constantino Tsallis proposed the generalization of statistical mechanics

itself on the basis of a nonadditive entropy, noted Sq, where the index q is a real number; Sq recovers the Boltzmann–

Gibbs (BG) expression for the value q = 1  . This theory is currently referred to as nonextensive statistical mechanics
. There was subsequently an explosion of entropic functionals: there are nowadays over fifty such entropies in the

available literature. However, very few among them have found neat applications in physics and elsewhere.
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