
Entropy | Encyclopedia.pub

https://encyclopedia.pub/entry/18759 1/4

Entropy
Subjects: Physics, Applied

Contributor: Constantino Tsallis

The concept of entropy constitutes, together with energy, a cornerstone of contemporary physics and related

areas. It was originally introduced by Clausius in 1865 along abstract lines focusing on thermodynamical

irreversibility of macroscopic physical processes. In the next decade, Boltzmann made the genius connection—

further developed by Gibbs—of the entropy with the microscopic world, which led to the formulation of a new and

impressively successful physical theory, thereafter named statistical mechanics. The extension to quantum

mechanical systems was formalized by von Neumann in 1927, and the connections with the theory of

communications and, more widely, with the theory of information were respectively introduced by Shannon in 1948

and Jaynes in 1957. Since then, over fifty new entropic functionals emerged in the scientific and technological

literature. The most popular among them are the additive Renyi one introduced in 1961, and the nonadditive one

introduced in 1988 as a basis for the generalization of the Boltzmann–Gibbs and related equilibrium and

nonequilibrium theories, focusing on natural, artificial and social complex systems. Along such lines, theoretical,

experimental, observational and computational efforts, and their connections to nonlinear dynamical systems and

the theory of probabilities, are currently under progress. Illustrative applications, in physics and elsewhere, of these

recent developments are briefly described in the present synopsis.
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Thermodynamics is an empirical physical theory which describes relevant aspects of the behavior of macroscopic

systems. In some form or another, all large physical systems are shown to satisfy this theory. It is based on two

most relevant concepts, namely energy. The German physicist and mathematician Rudolf Julius Emanuel Clausius

(1822–1888) introduced the concept of entropy in 1865 , along rather abstract lines in fact. He coined the word

from the Greek τροπη (trope¯ ), meaning transformation, turning, change. Clausius seemingly appreciated the

phonetic and etymological consonance with the word ’energy’ itself, from the Greek ευεργεια (energeia), meaning

activity, operation, work. It is generally believed that Clausius denoted the entropy with the letter S in honor of the

French scientist Sadi Carnot. For a reversible infinitesimal process, the exact differential quantity dS is related to

the differential heat transfer δQreversible through dS = δQreversible /T , T being the absolute temperature. The

quantity T plays the role of an integrating factor, which transforms the differential transfer of heat (dependent on

the specific path of the physical transformation) into the exact differential quantity of entropy (path-independent).

This relation was thereafter generalized by Clausius into its celebrated inequality dS ≥ δQ/T, the equality

corresponding to a reversible process. The inequality corresponds to irreversible processes and is directly implied

by the so-called Second Principle of Thermodynamics, deeply related to our human perception of the arrow of time.
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One decade later, the Austrian physicist and philosopher Ludwig Eduard Boltzmann (1844–1906) made a crucial

discovery, namely the connection of the thermodynamic entropy S with the microscopic world  . The celebrated

formula S = k ln W, W being the total number of equally probable microscopic possibilities compatible with our

information about the system, is carved in his tombstone in the Central Cemetery of Vienna. Although undoubtedly

Boltzmann knew this relation, it appears that he never wrote it in one of his papers. The American physicist,

chemist and mathematician Josiah Willard Gibbs (1839–1903) further discussed and extended the physical

meaning of this connection . Their efforts culminated in the formulation of a powerful theory, currently known

as statistical mechanics. This very name was, at the time, a deeply controversial matter. Indeed, it juxtaposes the

word mechanics—cornerstone of a fully deterministic understanding of Newtonian mechanics—and the word

statistics—cornerstone of a probabilistic description, precisely based on non-deterministic concepts. On top of that,

there was the contradiction with the Aristotelian view that fluids, e.g., the air, belong to the mineral kingdom of

nature, where there is no place for spontaneous motion. In severe variance, Boltzmann’s interpretation of the very

concept of temperature was directly related to spontaneous space-time fluctuations of the molecules (‘atoms’)

which constitute the fluid itself.

Many important contributions followed, including those by Max Planck, Paul and Tatyana Ehrenfest, and Albert

Einstein himself. Moreover, we mention here an important next step concerning entropy, namely its extension to

quantum mechanical systems. It was introduced in 1927  by the Hungarian-American mathematician, physicist

and computer scientist János Lajos Neumann (John von Neumann; 1903–1957).

The next nontrivial advance was done in 1948 by the American electrical engineer and mathematician Claude

Elwood Shannon (1916–2001), who based on the concept of entropy his “Mathematical Theory of

Communication” . This was the seed of what nowadays is ubiquitously referred to as the information theory,

within which the American physicist Edwin Thompson Jaynes (1922–1998) introduced the maximal entropy

principle, thus establishing the connection with statistical mechanics . Along these lines, several

generalizations were introduced, the first of them, hereafter noted  by the Hungarian mathematician Alfréd

Rényi (1921–1970) in 1961 . Various others followed in the next few decades within the realm of

information theory, cybernetics and other computer-based frames, such as the functionals by Havrda, Charvat ,

Lindhard, Nielsen , Sharma, Taneja, Mittal . During this long maturation period, many important issues

have been punctuated. Let us mention, for instance, Jaynes’ “anthropomorphic” conceptualization of entropy 

(first pointed by E.P. Wigner), and also Landauer’s “Information is physical” . In all cases, the entropy emerges

as a measure (a logarithmic measure for the Boltzmann–Gibbs instance) of the number of states of the system that

are accessible, or, equivalently, as a measure of our ignorance or uncertainty about the system.

In 1988, the Greek-Argentine-Brazilian physicist Constantino Tsallis proposed the generalization of statistical

mechanics itself on the basis of a nonadditive entropy, noted Sq, where the index q is a real number; Sq recovers

the Boltzmann–Gibbs (BG) expression for the value q = 1 . This theory is currently referred to as nonextensive

statistical mechanics . There was subsequently an explosion of entropic functionals: there are nowadays over
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fifty such entropies in the available literature. However, very few among them have found neat applications in

physics and elsewhere.
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