

Mechanisms by Which Smartphone Use Affects Sleep

Subjects: **Psychology**

Contributor: Santiago Correa-Iriarte , Sergio Hidalgo-Fuentes , Manuel Martí-Vilar

Sleep quality is a person's subjective assessment of how well they feel they have slept. There has been increasing concern about sleep-related problems (e.g., sleep efficiency, sleep latency, or sleep quality) due to the importance of sleep in the general health of the population, especially mental health. Problematic smartphone use (PSU) is defined as smartphone use associated with at least some element of dysfunctional use, such as anxiety when the smartphone is unavailable or abandonment of other activities due to smartphone use. Considering the widespread use of smartphones among the population and their suitability for use in bed, many health professionals have been interested in whether there is a link between increased screen use and sleep problems.

sleep quality

problematic smartphone use

circadian rhythms

increased arousal

bedtime procrastination

1. Introduction

Sleep quality is a person's subjective assessment of how well they feel they have slept [1]. In recent years, there has been growing concern about sleep-related problems (e.g., sleep efficiency, sleep latency or sleep quality) due to the importance of sleep in the overall health of the population, especially in mental health [2]. According to the Spanish Society of Neurology [3], more than 10% of the Spanish population will suffer from a severe chronic sleep disorder. In addition, 20–48% of Spanish adults and 20–25% of children have some difficulty initiating or maintaining sleep. There is no consensus on a gender difference in sleep quality, with some studies claiming that women have poorer sleep quality [4][5][6], while others do not find this relationship [7][8].

According to Stahl [9], disturbances in sleep–wake cycles are associated with an increase in mental disorders (e.g., major depression or anxiety disorders); immune system, cardiovascular and metabolic disorders (e.g., diabetes or stroke); neurological disorders (e.g., Alzheimer's dementia or chronic pain); endocrine dysfunction (e.g., in the hypothalamic–pituitary–adrenal axis); cancer; and other derived economic costs (e.g., loss of productivity or cost of accident repair).

Considering the health risks associated with sleep disturbances, data on the increase in sleep problems since the global COVID-19 pandemic may be cause for concern. A study of 19,267 adults in 13 Asian, American and European countries [10] found a significant increase in sleep and mental health problems since the COVID-19 pandemic. Similar results have been found in studies conducted in China [11], where the prevalence of clinical

insomnia has increased by 37% since the COVID-19 pandemic, or in Spain, where 23.9% of a sample of 15,070 people reported having problems initiating or maintaining sleep [12]. Considering that during the confinements the amount of time spent in front of screens increased for people of all age ranges [13], many health professionals have been interested in whether there is a link between increased screen use and sleep problems.

This becomes even more relevant when considering the widespread use of smartphones in the population and their suitability for use in bed [14]. In the case of Spain, and according to data from the National Institute of Statistics (INE) [15], 99.2% of people aged 16–74 used smartphones in the three months prior to the survey (conducted in November 2022). Smartme Analytics [16] reflects in its latest report that Spanish adults use, on average, a smartphone for 3 h and 40 min, a figure that increases to 4 h and 15 min a day in the case of young people between 18 and 24 years old.

Problematic smartphone use (PSU) is defined as the use of a smartphone associated with at least some element of dysfunctional use, such as anxiety when the smartphone is not available or neglect of other activities due to smartphone use [17]. These negative or dysfunctional effects can range from withdrawal to loss of control over phone use, decreased productivity, impaired daily functioning, detriment to social relationships or damage to physical health [18][19][20][21]. PSU is closely related, or even overlapping, with other phenomena such as problematic use of social networks, messaging apps or the internet [22][23][24]. However, there are some differences in terms of risk factors, for example, men tend to develop more problematic internet use, while women are more at risk of manifesting PSU [25]. The terminology related to behavioural addictions when researching smartphones is controversial, as some authors think that this may stigmatise smartphone users [21]. Moreover, PSU is not listed as an addiction in any of the main diagnostic manuals, neither the DSM-5 [26] nor the more recent ICD-11 [27]. Thus, in addition to “problematic smartphone use” and “smartphone addiction” other terms have been used to describe this type of relationship with smartphones: “excessive use”, “compulsive use” and “compensatory use” [28][29][30].

The prevalence of PSU in adults varies in different countries, for example, in Arabia it is 66.9% [31], in Bangladesh 61.4% [32] and in China estimates range from 65.8 to 52.8% [33]. Likewise, in Spain, several studies have placed the prevalence of PSU between 20.5 and 23.75% [34][35]. It is worth noting the difficulty in assessing and comparing the prevalence of PSU due to the inconsistency of diagnostic criteria and assessment methods [36]. Additionally, although some studies have found no sex differences [37], there is some consensus in the scientific evidence that women are at higher risk of developing PSU [38][39][40][41][42][43][44][45]. These differences could be caused by a different pattern of smartphone use, with women using smartphones for social purposes (i.e., social networking or instant messaging) and men for more varied purposes, such as video games, calls, and multimedia content [46][47]. In addition, women (especially younger women) may have a higher prevalence of PSU due to having more malleable and influenceable self-control in social situations than men [48][49].

Several negative consequences of PSU have been found, such as low productivity [50], poor academic performance [51][52], general procrastination [53], academic procrastination [54], low self-esteem [55], increased alcohol consumption [52], anxiety and depression [56][57][58], executive function deficiencies [59][60] and sleep problems [61][62][63][64][65].

2. Disruption of Circadian Rhythms

First, it has been proposed that smartphone use close to sleep time may alter the production of melatonin and/or cortisol, both of which are important hormones in the regulation of circadian rhythms.

Melatonin is a hormone secreted by the pineal gland and regulated by sleep-inducing light/dark cycles. The pineal gland is a neural structure related to the visual system and has retinohypothalamic connections with the suprachiasmatic nuclei that house the internal biological clock and play a crucial role in generating circadian rhythms. It has been shown that light exposure in the evening can delay the phase of the internal clock, resulting in sleep problems, while light exposure in the morning advances melatonin secretion [66].

Cortisol, on the other hand, is a steroid hormone produced in the adrenal cortex, related to sleep arousal and wakefulness [67]. Cortisol shows a circadian rhythm, with a peak at the transition between sleep and wakefulness. After awakening, secretion of the hormone decreases throughout the day, reaching a minimum around midnight, before gradually increasing again to reach a new peak the following morning. Thus, cortisol, like melatonin, serves as a marker of an organism's circadian temporal structure, regulating the sleep/wake cycle.

LED-backlit displays (such as smartphones) emit 3.3 times more light in the blue range (440–470 nm) than non-LED-backlit displays (e.g., some eReaders or displays using cathode ray tubes), as reported by Cajochen et al. [68]. This difference is relevant as studies indicate that human circadian physiology and alertness levels are particularly sensitive to short-wavelength light [69][70][71][72].

Night-time exposure to an LED-backlit computer screen has been shown to cause a decrease in salivary melatonin levels [69] and an increase in waking time, along with improved cognitive performance, sustained attention, and working and declarative memory [68][73]. However, any delay in the circadian release of melatonin has negative consequences for sleep induction [74]. Schmid et al. [75] compared the effect on melatonin, cortisol and sleep levels of reading before sleep on a smartphone versus reading a printed book. They found that melatonin and cortisol levels were found to be altered in the smartphone use condition, in addition to a reduction in slow wave sleep. According to a study by Wallenius et al. [76], school children who used digital media for three hours a day showed a decrease in the cortisol increase one hour after waking up, showing an alteration in the circadian rhythm that this hormone follows. In contrast, children who used digital media for less than three hours or not at all showed a typical increase in cortisol in the morning. Another study with children showed a greater increase in cortisol just after using DVD screens versus playing with wooden blocks [77].

It is worth noting that the closer-to-face use of smartphones compared to other traditional media such as television [78], which is usually placed at a greater distance from the face, can lead to greater exposure to shortwave light [79] and thus cause greater sleep disturbance compared to other types of screens. In fact, a study by Figueiro et al. [80] found that the light emitted by 70-inch LED-backlit LCD televisions located 1.8 to 2.7 metres from the subjects did not alter melatonin production in adults.

Regarding radiofrequency electromagnetic fields (RF-EMFs) emitted by smartphones, a review of the literature by Selmaoui and Touitou [81] states that no conclusive evidence has been found that this type of radiation alters melatonin or cortisol secretion. Instead, according to these authors, there are indications that melatonin may be a protective agent against the negative effects of RF-EMFs, such as oxidative stress and DNA damage, as well as having neuroprotective properties.

3. Increased Arousal

According to another line of research, increased arousal (especially cognitive and somatic arousal) before sleep may negatively influence sleep quality.

A study by Kheirinejad et al. [82] used the OURa wearable [83] to measure different components of sleep and the AWARE instrument [84] to assess smartphone usage by automatically collecting usage data. They concluded that the cognitive activation required during bedtime to perform different smartphone uses, such as conversing with other people or consuming images, text, video and audio, have a negative impact on sleep quality, but without a significant difference between them. On the other hand, Ong et al. [85] proposed a model in which two types of cognitive arousal, primary and secondary, contribute to the maintenance of insomnia. Secondary (metacognitive) cognitive arousal would encompass biases towards sleep-related thoughts and behaviours, rigidity in behavioural or sleep-related beliefs, and absorption in sleep problem solving. Primary cognitive arousal would consist of expectations about sleep, beliefs about the daytime consequences of sleep deprivation and, what concerns us in this section, increased mental activity at bedtime.

One of the main uses of smartphones is social media and communication applications, which sometimes require high cognitive functioning, which is not suitable for sleep induction or good sleep quality [86]. Specifically, of the 3 h and 40 min of smartphone time per day of Spanish adults, 1 h and 20 min are spent on social networks and another 40 min on instant messaging applications [16], which combined account for more than 50% of the total time spent on smartphones. It has been shown how increased arousal before sleep is a mediating variable between the negative effect of binge-watching TV series via smartphones [87] or the use of social networks [88] on sleep quality.

However, although correlational studies point to increased arousal as a possible cause of reduced sleep quality [89] [90] [91], an experimental study blocking the effect of blue light from smartphones conducted by Combertaldi et al. [92] found no such relationship. They did not observe empirical evidence of increased arousal from the use of social networks such as WhatsApp or Snapchat, nor a reduction in sleep quality. The authors hypothesise that the negative effect of smartphone use on sleep quality is due to the use of smartphones at bedtime (which usually exceeds 30 min) and its corresponding displacement of sleep time.

4. Bedtime Procrastination and Sleep Displacement

Self-regulation, according to Gillebaart [93], can be defined as the cognitive ability to monitor, plan and guide a person's behaviour to facilitate goal attainment and inhibit disruptive emotions and behaviour. Proper self-

regulation requires adequate functioning in the brain's reward system and top-down control of the prefrontal cortex [94]. As Zhang and Wu [95] point out, it has been shown that addictive behaviours can alter brain circuits related to self-regulation such as prefrontal cortex functioning and top-down control [96][97][98][99][100]. A deficit in inhibitory control, a feature closely related to self-regulation, is present in individuals with a PSU [101]. Additionally, Rebetez et al. [102] suggested the depletion of self-regulatory resources and the failure of self-regulation as a source of procrastination. Thus, when talking about self-regulation and sleep, we must talk about bedtime procrastination, a relatively recent concept [103] that is defined as the action by which people deliberately delay going to bed without external interference, even though negative outcomes are anticipated.

A qualitative study by Nauts et al. [104] found three reasons why people procrastinate sleep: deliberate bedtime procrastination, unconscious bedtime procrastination and planned delay. The first refers to consciously delaying sleep time to perform tasks that could be done at another time or to have a moment to oneself after a long day of work. Unconscious bedtime procrastination occurs when, for example, people lose perception of time while absorbed in a task. Finally, strategic procrastination is when people make a conscious decision to delay sleep in order to avoid negative emotions related to rumination, long sleep latency or as a remedy for insomnia (accumulating "sleep pressure"). However, some authors argue that the belief held by these subjects that sleep delay benefits them (even if it does not) means that strategic delay is not considered bedtime procrastination per se [104][105][106].

Kroese and De Ridder [106] indicate how people with low self-regulation show higher bedtime procrastination as well as insufficient sleep. Another study by Ma et al. [107] involving 1550 university students found that bedtime procrastination is a strong predictor of prevalence and severity of poor sleep quality. Authors have proposed that smartphone use may be one of the causes of the so-called displacement theory. This theory is based on the idea that unstructured leisure use of electronic devices, such as smartphones, can displace other activities, such as sleep. Thus, smartphone use may delay sleep time (causing bedtime procrastination) and possibly reduce the amount of sleep, or even create an association between being in bed and being active [108][109][110]. In this regard, a study conducted in China involving 2741 university students found that a total of 57.5% of their sample used a smartphone in bed [111]. At the same time, a Danish study [112] found that 12% of participants used their smartphone for 3–5 h late at night. There is no consensus regarding gender differences in bedtime procrastination, as some studies find significant differences [113], while others do not [114].

In addition, procrastination using the smartphone can induce negative self-evaluations such as self-defeating thoughts [115]. Consequently, these self-evaluations may in turn cause stress [116], guilt [117] or feelings of self-condemnation [118], which manifest as sleep problems [115]. The same can be inferred to be true for bedtime procrastination, as it is a form of procrastination and has been directly linked to depression [119]. The opposite relationship has also been observed, where rumination and other forms of negative affect may increase bedtime procrastination and thus affect sleep quality [120]. Moreover, some studies suggest that smartphone use may be a form of experiential avoidance of negative emotions [121]. This could be explained by the bidirectional relationship between PSU, increased depressive or anxious symptoms, and vice versa [122][123]. In addition, it has also been shown that the ability of smartphones to impair sleep quality and sleep drift can increase symptoms of depression

and stress [124]. Simultaneously, PSU itself may increase depression and anxiety, and thus impair sleep [61]. This impact could form a vicious cycle in which negative emotions (including depressive and anxious symptoms towards sleep quality or bedtime procrastination) lead to maintaining or increasing their smartphone use and fuel negative affectivity.

Recently, different authors have conducted different studies based on mediational analyses observing how the impact of smartphone use (problematic or not) in sleep quality is mediated by bedtime procrastination, in addition to other variables such as self-regulation [95], psychological detachment [125] or fear of missing out (or FoMO) [126]. A similar phenomenon has been observed in the impact of problematic internet use and poorer sleep quality, mediated by bedtime procrastination [127].

References

1. Buysse, D.J. Sleep Health: Can We Define It? Does It Matter? *Sleep* 2014, 37, 9–17.
2. Scott, A.J.; Webb, T.L.; Martyn-St James, M.; Rowse, G.; Weich, S. Improving Sleep Quality Leads to Better Mental Health: A Meta-Analysis of Randomised Controlled Trials. *Sleep Med. Rev.* 2021, 60, 101556.
3. Spanish Society of Neurology. Los Problemas Del Sueño Amenazan la Salud Y la Calidad de Vida de Hasta El 45% De la Población Mundial. 2021. Available online: <https://www.sen.es/saladeprensa/pdf/Link263.pdf> (accessed on 18 May 2023).
4. Galland, B.C.; Gray, A.R.; Penno, J.; Smith, C.; Lobb, C.; Taylor, R.W. Gender Differences in Sleep Hygiene Practices and Sleep Quality in New Zealand Adolescents Aged 15 to 17 Years. *Sleep Health* 2017, 3, 77–83.
5. Fatima, Y.; Doi, S.A.R.; Najman, J.M.; Mamun, A.A. Exploring Gender Difference in Sleep Quality of Young Adults: Findings from a Large Population Study. *Clin. Med. Res.* 2016, 14, 138–144.
6. Tang, J.; Liao, Y.; Kelly, B.C.; Xie, L.; Xiang, Y.-T.; Qi, C.; Pan, C.; Hao, W.; Liu, T.; Zhang, F.; et al. Gender and Regional Differences in Sleep Quality and Insomnia: A General Population-Based Study in Hunan Province of China. *Sci. Rep.* 2017, 7, 43690.
7. João, K.A.D.R.; de Jesus, S.N.; Carmo, C.; Pinto, P. The Impact of Sleep Quality on the Mental Health of a Non-Clinical Population. *Sleep Med.* 2018, 46, 69–73.
8. Madrid-Valero, J.J.; Kirkpatrick, R.M.; González-Javier, F.; Gregory, A.M.; Ordoñana, J.R. Sex Differences in Sleep Quality and Psychological Distress: Insights from a Middle-Aged Twin Sample from Spain. *J. Sleep Res.* 2023, 32, e13714.
9. Stahl, S.M. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-905336-

5.

10. Merikanto, I.; Kortesoja, L.; Benedict, C.; Chung, F.; Cedernaes, J.; Espie, C.A.; Morin, C.M.; Dauvilliers, Y.; Partinen, M.; De Gennaro, L.; et al. Evening-Types Show Highest Increase of Sleep and Mental Health Problems during the COVID-19 Pandemic—Multinational Study on 19 267 Adults. *Sleep* 2022, 45, zsab216.
11. Lin, L.-Y.; Wang, J.; Ou-Yang, X.-Y.; Miao, Q.; Chen, R.; Liang, F.-X.; Zhang, Y.-P.; Tang, Q.; Wang, T. The Immediate Impact of the 2019 Novel Coronavirus (COVID-19) Outbreak on Subjective Sleep Status. *Sleep Med.* 2021, 77, 348–354.
12. Dal Santo, F.; González-Blanco, L.; Rodríguez-Revuelta, J.; Marina González, P.A.; Paniagua, G.; García-Álvarez, L.; De La Fuente-Tomás, L.; Sáiz, P.A.; García-Portilla, M.P.; Bobes, J. Early Impact of the COVID-19 Outbreak on Sleep in a Large Spanish Sample. *Behav. Sleep. Med.* 2022, 20, 100–115.
13. Trott, M.; Driscoll, R.; Iraldo, E.; Pardhan, S. Changes and Correlates of Screen Time in Adults and Children during the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. *eClinicalMedicine* 2022, 48, 101452.
14. Lapierre, M.A.; Zhao, P.; Custer, B.E. Short-Term Longitudinal Relationships Between Smartphone Use/Dependency and Psychological Well-Being Among Late Adolescents. *J. Adolesc. Health* 2019, 65, 607–612.
15. National Institute of Statistics. Encuesta sobre Equipamiento y Uso de Tecnologías de Información y Comunicación (TIC) en los Hogares. 2022. Available online: https://www.ine.es/prensa/tich_2022.pdf (accessed on 18 May 2023).
16. Smartme Analytics Digital Consumer by Generation. Available online: <https://smartmeanalytics.com/insight/digital-consumer-by-generation-2022> (accessed on 18 May 2023).
17. Kwon, M.; Kim, D.-J.; Cho, H.; Yang, S. The Smartphone Addiction Scale: Development and Validation of a Short Version for Adolescents. *PLoS ONE* 2013, 8, e83558.
18. Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can Disordered Mobile Phone Use Be Considered a Behavioral Addiction? An Update on Current Evidence and a Comprehensive Model for Future Research. *Curr. Addict. Rep.* 2015, 2, 156–162.
19. Horwood, S.; Anglim, J. Personality and Problematic Smartphone Use: A Facet-Level Analysis Using the Five Factor Model and HEXACO Frameworks. *Comput. Hum. Behav.* 2018, 85, 349–359.
20. Lepp, A.; Li, J.; Barkley, J.E. College Students' Cell Phone Use and Attachment to Parents and Peers. *Comput. Hum. Behav.* 2016, 64, 401–408.

21. Panova, T.; Carbonell, X. Is Smartphone Addiction Really an Addiction? *J. Behav. Addict.* 2018, 7, 252–259.

22. Montag, C.; Wegmann, E.; Sariyska, R.; Demetrovics, Z.; Brand, M. How to Overcome Taxonomical Problems in the Study of Internet Use Disorders and What to Do with “Smartphone Addiction”? *J. Behav. Addict.* 2021, 9, 908–914.

23. Servidio, R. Self-Control and Problematic Smartphone Use among Italian University Students: The Mediating Role of the Fear of Missing out and of Smartphone Use Patterns. *Curr. Psychol.* 2021, 40, 4101–4111.

24. Sha, P.; Sariyska, R.; Riedl, R.; Lachmann, B.; Montag, C. Linking Internet Communication and Smartphone Use Disorder by Taking a Closer Look at the Facebook and Whatsapp Applications. *Addict. Behav. Rep.* 2019, 9, 100148.

25. Lee, S.-Y.; Lee, D.; Nam, C.R.; Kim, D.Y.; Park, S.; Kwon, J.-G.; Kweon, Y.-S.; Lee, Y.; Kim, D.J.; Choi, J.-S. Distinct Patterns of Internet and Smartphone-Related Problems among Adolescents by Gender: Latent Class Analysis. *J. Behav. Addict.* 2018, 7, 454–465.

26. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013; ISBN 978-0-89042-555-8.

27. World Health Organization. International Classification of Diseases 11th Revision (ICD-11). Available online: <https://icd.who.int/> (accessed on 8 August 2023).

28. Thomée, S. Mobile Phone Use and Mental Health. A Review of the Research That Takes a Psychological Perspective on Exposure. *Int. J. Environ. Res. Public Health* 2018, 15, 2692.

29. Kardefelt-Winther, D. A Conceptual and Methodological Critique of Internet Addiction Research: Towards a Model of Compensatory Internet Use. *Comput. Hum. Behav.* 2014, 31, 351–354.

30. Widyanto, L.; Griffiths, M. ‘Internet Addiction’: A Critical Review. *Int. J. Ment. Health Addict.* 2006, 4, 31–51.

31. Abo-Ali, E.A.; Al-Ghanmi, A.; Hadad, H.; Etaiwi, J.; Bhutta, K.; Hadad, N.; Almilaibary, A.; Ghareeb, W.A.; Sanad, A.; Zaytoun, S. Problematic Smartphone Use: Prevalence and Associated Factors Among Health Sciences Students in Saudi Arabia. *J. Prev.* 2022, 43, 659–671.

32. Ratan, Z.A.; Parrish, A.-M.; Alotaibi, M.S.; Hosseinzadeh, H. Prevalence of Smartphone Addiction and Its Association with Sociodemographic, Physical and Mental Well-Being: A Cross-Sectional Study among the Young Adults of Bangladesh. *Int. J. Environ. Res. Public Health* 2022, 19, 16583.

33. Wang, A.; Wang, Z.; Zhu, Y.; Shi, X. The Prevalence and Psychosocial Factors of Problematic Smartphone Use Among Chinese College Students: A Three-Wave Longitudinal Study. *Front. Psychol.* 2022, 13, 877277.

34. Ballestar-Tarín, M.L.; Simó-Sanz, C.; Chover-Sierra, E.; Saus-Ortega, C.; Casal-Angulo, C.; Martínez-Sabater, A. Self-Perception of Dependence as an Indicator of Smartphone Addiction. Establishment of a Cut-off Point in the SPAI-SP Inventory. *Int. J. Environ. Res. Public Health* 2020, 17, 3838.

35. De-Solá, J.; Talledo, H.; de Fonseca, F.R.; Rubio, G. Prevalence of Problematic Cell Phone Use in an Adult Population in Spain as Assessed by the Mobile Phone Problem Use Scale (MPPUS). *PLoS ONE* 2017, 12, e0181184.

36. Winkler, A.; Jeromin, F.; Doering, B.K.; Barke, A. Problematic Smartphone Use Has Detrimental Effects on Mental Health and Somatic Symptoms in a Heterogeneous Sample of German Adults. *Comput. Hum. Behav.* 2020, 113, 106500.

37. Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender Differences in Factors Associated with Smartphone Addiction: A Cross-Sectional Study among Medical College Students. *BMC Psychiatry* 2017, 17, 341.

38. Amador-Licona, N.; Carpio-Mendoza, J.J.; Guízar-Mendoza, J.M.; Rodríguez-Sánchez, P. Auto-percepción del Uso Problemático del Teléfono Móvil en Estudiantes Universitarios de Acuerdo a su Sexo. *Cuad. Hispanoam. Psicol.* 2019, 19, 1–16.

39. Choi, S.-W.; Kim, D.-J.; Choi, J.-S.; Ahn, H.; Choi, E.-J.; Song, W.-Y.; Kim, S.; Youn, H. Comparison of Risk and Protective Factors Associated with Smartphone Addiction and Internet Addiction. *J. Behav. Addict.* 2015, 4, 308–314.

40. De-Solá, J.; Rubio, G.; Talledo, H.; Pistoni, L.; Van Riesen, H.; Rodríguez de Fonseca, F. Cell Phone Use Habits Among the Spanish Population: Contribution of Applications to Problematic Use. *Front. Psychiatry* 2019, 10, 883.

41. Hsieh, H.-F.; Hsu, H.-T.; Lin, P.-C.; Yang, Y.-J.; Huang, Y.-T.; Ko, C.-H.; Wang, H.-H. The Effect of Age, Gender, and Job on Skin Conductance Response among Smartphone Users Who Are Prohibited from Using Their Smartphone. *Int. J. Environ. Res. Public Health* 2020, 17, 2313.

42. Lee, H.; Kim, J.W.; Choi, T.Y. Risk Factors for Smartphone Addiction in Korean Adolescents: Smartphone Use Patterns. *J. Korean Med. Sci.* 2017, 32, 1674–1679.

43. Lopez-Fernandez, O.; Losada-Lopez, J.L.; Honrubia-Serrano, M.L. Predictors of Problematic Internet and Mobile Phone Usage in Adolescents. *Aloma Rev. Psicol. Ciènc. Educ. Esport* 2015, 33, 49–58.

44. Nayak, J.K. Relationship among Smartphone Usage, Addiction, Academic Performance and the Moderating Role of Gender: A Study of Higher Education Students in India. *Comput. Educ.* 2018, 123, 164–173.

45. Randler, C.; Wolfgang, L.; Matt, K.; Demirhan, E.; Horzum, M.B.; Beşoluk, Ş. Smartphone Addiction Proneness in Relation to Sleep and Morningness–Eveningness in German Adolescents.

J. Behav. Addict. 2016, 5, 465–473.

46. Chen, C.; Zhang, K.Z.K.; Gong, X.; Zhao, S.J.; Lee, M.K.O.; Liang, L. Examining the Effects of Motives and Gender Differences on Smartphone Addiction. *Comput. Hum. Behav.* 2017, 75, 891–902.

47. De-Solá, J.; Rodríguez de Fonseca, F.; Rubio, G. Cell-Phone Addiction: A Review. *Front. Psychiatry* 2016, 7, 175.

48. Jo, Y.; Bouffard, L. Stability of Self-Control and Gender. *J. Crim. Justice* 2014, 42, 356–365.

49. Jo, Y.; Zhang, Y. Parenting, Self-Control, and Delinquency: Examining the Applicability of Gottfredson and Hirschi's General Theory of Crime to South Korean Youth. *Int. J. Offender Ther. Comp. Criminol.* 2014, 58, 1340–1363.

50. Duke, É.; Montag, C. Smartphone Addiction, Daily Interruptions and Self-Reported Productivity. *Addict. Behav. Rep.* 2017, 6, 90–95.

51. Amez, S.; Baert, S. Smartphone Use and Academic Performance: A Literature Review. *Int. J. Educ. Res.* 2020, 103, 101618.

52. Grant, J.E.; Lust, K.; Chamberlain, S.R. Problematic Smartphone Use Associated with Greater Alcohol Consumption, Mental Health Issues, Poorer Academic Performance, and Impulsivity. *J. Behav. Addict.* 2019, 8, 335–342.

53. Rozgonjuk, D.; Kattago, M.; Täht, K. Social Media Use in Lectures Mediates the Relationship between Procrastination and Problematic Smartphone Use. *Comput. Hum. Behav.* 2018, 89, 191–198.

54. Hidalgo-Fuentes, S. Uso Problemático Del Smartphone y Procrastinación En El Ámbito Académico: Un Meta-Análisis. *Electron. J. Res. Educ. Psychol.* 2022, 20, 449–468.

55. Casale, S.; Fioravanti, G.; Bocci Benucci, S.; Falone, A.; Ricca, V.; Rotella, F. A Meta-Analysis on the Association between Self-Esteem and Problematic Smartphone Use. *Comput. Hum. Behav.* 2022, 134, 107302.

56. Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic Smartphone Use: A Conceptual Overview and Systematic Review of Relations with Anxiety and Depression Psychopathology. *J. Affect. Disord.* 2017, 207, 251–259.

57. Elhai, J.D.; Rozgonjuk, D.; Alghraibeh, A.M.; Yang, H. Disrupted Daily Activities from Interruptive Smartphone Notifications: Relations With Depression and Anxiety Severity and the Mediating Role of Boredom Proneness. *Soc. Sci. Comput. Rev.* 2021, 39, 20–37.

58. Rozgonjuk, D.; Levine, J.C.; Hall, B.J.; Elhai, J.D. The Association between Problematic Smartphone Use, Depression and Anxiety Symptom Severity, and Objectively Measured Smartphone Use over One Week. *Comput. Hum. Behav.* 2018, 87, 10–17.

59. Hartanto, A.; Chua, Y.J.; Quek, F.Y.X.; Wong, J.; Ooi, W.M. Problematic Smartphone Usage, Objective Smartphone Engagement, and Executive Functions: A Latent Variable Analysis. *Atten. Percept. Psychophys.* 2023.

60. Lim, J. The Effect of Adult Smartphone Addiction on Memory Impairment: Focusing on the Mediating effect of Executive Function Deficiencies. *J. Digit. Converg.* 2018, 16, 299–308.

61. Demirci, K.; Akgönül, M.; Akpinar, A. Relationship of Smartphone Use Severity with Sleep Quality, Depression, and Anxiety in University Students. *J. Behav. Addict.* 2015, 4, 85–92.

62. Hughes, N.; Burke, J. Sleeping with the Frenemy: How Restricting ‘Bedroom Use’ of Smartphones Impacts Happiness and Wellbeing. *Comput. Hum. Behav.* 2018, 85, 236–244.

63. Panda, A.; Jain, N.K. Compulsive Smartphone Usage and Users’ Ill-Being among Young Indians: Does Personality Matter? *Telemat. Inform.* 2018, 35, 1355–1372.

64. Volungis, A.M.; Kalpidou, M.; Popores, C.; Joyce, M. Smartphone Addiction and Its Relationship with Indices of Social-Emotional Distress and Personality. *Int. J. Ment. Health Addict.* 2020, 18, 1209–1225.

65. Yang, Z.; Asbury, K.; Griffiths, M.D. “A Cancer in the Minds of Youth?” A Qualitative Study of Problematic Smartphone Use among Undergraduate Students. *Int. J. Ment. Health Addict.* 2021, 19, 934–946.

66. Lewy, A.J. Melatonin and Human Chronobiology. *Cold Spring Harb. Symp. Quant. Biol.* 2007, 72, 623–636.

67. Oster, H.; Challet, E.; Ott, V.; Arvat, E.; De Kloet, E.R.; Dijk, D.-J.; Lightman, S.; Vgontzas, A.; Van Cauter, E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. *Endocr. Rev.* 2017, 38, 3–45.

68. Cajochen, C.; Frey, S.; Anders, D.; Späti, J.; Bues, M.; Pross, A.; Mager, R.; Wirz-Justice, A.; Stefani, O. Evening Exposure to a Light-Emitting Diodes (LED)-Backlit Computer Screen Affects Circadian Physiology and Cognitive Performance. *J. Appl. Physiol.* 2011, 110, 1432–1438.

69. Cajochen, C.; Münch, M.; Kobialka, S.; Kräuchi, K.; Steiner, R.; Oelhafen, P.; Orgül, S.; Wirz-Justice, A. High Sensitivity of Human Melatonin, Alertness, Thermoregulation, and Heart Rate to Short Wavelength Light. *J. Clin. Endocrinol. Metab.* 2005, 90, 1311–1316.

70. Fisk, A.S.; Tam, S.K.E.; Brown, L.A.; Vyazovskiy, V.V.; Bannerman, D.M.; Peirson, S.N. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. *Front. Neurol.* 2018, 9, 56.

71. Höhn, C.; Schmid, S.R.; Plamberger, C.P.; Bothe, K.; Angerer, M.; Gruber, G.; Pletzer, B.; Hoedlmoser, K. Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness. *Clocks Sleep* 2021, 3, 66–86.

72. Van Der Lely, S.; Frey, S.; Garbazza, C.; Wirz-Justice, A.; Jenni, O.G.; Steiner, R.; Wolf, S.; Cajochen, C.; Bromundt, V.; Schmidt, C. Blue Blocker Glasses as a Countermeasure for Alerting Effects of Evening Light-Emitting Diode Screen Exposure in Male Teenagers. *J. Adolesc. Health* 2015, 56, 113–119.

73. Taillard, J.; Capelli, A.; Sagaspe, P.; Anund, A.; Akerstedt, T.; Philip, P. In-Car Nocturnal Blue Light Exposure Improves Motorway Driving: A Randomized Controlled Trial. *PLoS ONE* 2012, 7, e46750.

74. Chinoy, E.D.; Duffy, J.F.; Czeisler, C.A. Unrestricted Evening Use of Light-Emitting Tablet Computers Delays Self-Selected Bedtime and Disrupts Circadian Timing and Alertness. *Physiol. Rep.* 2018, 6, e13692.

75. Schmid, S.R.; Höhn, C.; Bothe, K.; Plamberger, C.P.; Angerer, M.; Pletzer, B.; Hoedlmoser, K. How Smart Is It to Go to Bed with the Phone? The Impact of Short-Wavelength Light and Affective States on Sleep and Circadian Rhythms. *Clocks Sleep* 2021, 3, 558–580.

76. Wallenius, M.; Hirvonen, A.; Lindholm, H.; Rimpela, A.; Nygård, C.-H.; Saarni, L.; Punamäki, R.-L. Salivary Cortisol in Relation to the Use of Information and Communication Technology (ICT) in School-Aged Children. *Psychology* 2010, 1, 88–95.

77. Christakis, D.A.; Liekweg, K.; Garrison, M.M.; Wright, J.A. Infant Video Viewing and Salivary Cortisol Responses: A Randomized Experiment. *J. Pediatr.* 2013, 162, 1035–1040.

78. Twenge, J.M. More Time on Technology, Less Happiness? Associations Between Digital-Media Use and Psychological Well-Being. *Curr. Dir. Psychol. Sci.* 2019, 28, 372–379.

79. Calamaro, C.J.; Mason, T.B.A.; Ratcliffe, S.J. Adolescents Living the 24/7 Lifestyle: Effects of Caffeine and Technology on Sleep Duration and Daytime Functioning. *Pediatrics* 2009, 123, e1005–e1010.

80. Figueiro, M.G.; Wood, B.; Plitnick, B.; Rea, M.S. The Impact of Watching Television on Evening Melatonin Levels: Impact of Watching Television on Evening Melatonin. *J. Soc. Inf. Disp.* 2013, 21, 417–421.

81. Selmaoui, B.; Touitou, Y. Association Between Mobile Phone Radiation Exposure and the Secretion of Melatonin and Cortisol, Two Markers of the Circadian System: A Review. *Bioelectromagnetics* 2021, 42, 5–17.

82. Kheirinejad, S.; Visuri, A.; Ferreira, D.; Hosio, S. “Leave Your Smartphone out of Bed”: Quantitative Analysis of Smartphone Use Effect on Sleep Quality. *Pers. Ubiquitous Comput.* 2023, 27, 447–466.

83. Altini, M.; Kinnunen, H. The Promise of Sleep: A Multi-Sensor Approach for Accurate Sleep Stage Detection Using the Oura Ring. *Sensors* 2021, 21, 4302.

84. Ferreira, D.; Kostakos, V.; Dey, A.K. AWARE: Mobile Context Instrumentation Framework. *Front. ICT* 2015, 2, 6.

85. Ong, J.C.; Ulmer, C.S.; Manber, R. Improving Sleep with Mindfulness and Acceptance: A Metacognitive Model of Insomnia. *Behav. Res. Ther.* 2012, 50, 651–660.

86. Bodas, M.; Siman-Tov, M.; Peleg, K.; Solomon, Z. Anxiety-Inducing Media: The Effect of Constant News Broadcasting on the Well-Being of Israeli Television Viewers. *Psychiatry* 2015, 78, 265–276.

87. Exelmans, L.; Van Den Bulck, J. Binge Viewing, Sleep, and the Role of Pre-Sleep Arousal. *J. Clin. Sleep Med.* 2017, 13, 1001–1008.

88. Harbard, E.; Allen, N.B.; Trinder, J.; Bei, B. What's Keeping Teenagers Up? Prebedtime Behaviors and Actigraphy-Assessed Sleep Over School and Vacation. *J. Adolesc. Health* 2016, 58, 426–432.

89. Mauri, M.; Cipresso, P.; Balgera, A.; Villamira, M.; Riva, G. Why Is Facebook So Successful? Psychophysiological Measures Describe a Core Flow State While Using Facebook. *Cyberpsychology Behav. Soc. Netw.* 2011, 14, 723–731.

90. Van den Bulck, J. Text Messaging as a Cause of Sleep Interruption in Adolescents, Evidence from a Cross-Sectional Study. *J. Sleep Res.* 2003, 12, 263.

91. Woods, H.C.; Scott, H. #Sleepyteens: Social Media Use in Adolescence Is Associated with Poor Sleep Quality, Anxiety, Depression and Low Self-Esteem. *J. Adolesc.* 2016, 51, 41–49.

92. Combertaldi, S.L.; Ort, A.; Cordi, M.; Fahr, A.; Rasch, B. Pre-Sleep Social Media Use Does Not Strongly Disturb Sleep: A Sleep Laboratory Study in Healthy Young Participants. *Sleep Med.* 2021, 87, 191–202.

93. Gillebaart, M. The 'Operational' Definition of Self-Control. *Front. Psychol.* 2018, 9, 1231.

94. Heatherton, T.F.; Wagner, D.D. Cognitive Neuroscience of Self-Regulation Failure. *Trends Cogn. Sci.* 2011, 15, 132–139.

95. Zhang, M.X.; Wu, A.M.S. Effects of Smartphone Addiction on Sleep Quality among Chinese University Students: The Mediating Role of Self-Regulation and Bedtime Procrastination. *Addict. Behav.* 2020, 111, 106552.

96. Goldstein, R.Z.; Volkow, N.D. Dysfunction of the Prefrontal Cortex in Addiction: Neuroimaging Findings and Clinical Implications. *Nat. Rev. Neurosci.* 2011, 12, 652–669.

97. Lewis, M. Addiction and the Brain: Development, Not Disease. *Neuroethics* 2017, 10, 7–18.

98. Noël, X.; Brevers, D.; Bechara, A. A Neurocognitive Approach to Understanding the Neurobiology of Addiction. *Curr. Opin. Neurobiol.* 2013, 23, 632–638.

99. Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D. Addiction Circuitry in the Human Brain. *Annu. Rev. Pharmacol. Toxicol.* 2012, 52, 321–336.

100. Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. *N. Engl. J. Med.* 2016, 374, 363–371.

101. Chen, J.; Liang, Y.; Mai, C.; Zhong, X.; Qu, C. General Deficit in Inhibitory Control of Excessive Smartphone Users: Evidence from an Event-Related Potential Study. *Front. Psychol.* 2016, 7, 511.

102. Rebetez, M.M.L.; Rochat, L.; Barsics, C.; Van Der Linden, M. Procrastination as a Self-Regulation Failure: The Role of Inhibition, Negative Affect, and Gender. *Personal. Individ. Differ.* 2016, 101, 435–439.

103. Kroese, F.M.; De Ridder, D.T.D.; Evers, C.; Adriaanse, M.A. Bedtime Procrastination: Introducing a New Area of Procrastination. *Front. Psychol.* 2014, 5, 611.

104. Nauts, S.; Kamphorst, B.A.; Stut, W.; De Ridder, D.T.D.; Anderson, J.H. The Explanations People Give for Going to Bed Late: A Qualitative Study of the Varieties of Bedtime Procrastination. *Behav. Sleep. Med.* 2019, 17, 753–762.

105. Chowdhury, S.F.; Pychyl, T.A. A Critique of the Construct Validity of Active Procrastination. *Personal. Individ. Differ.* 2018, 120, 7–12.

106. Kroese, F.M.; de Ridder, D.T.D. Health Behaviour Procrastination: A Novel Reasoned Route towards Self-Regulatory Failure. *Health Psychol. Rev.* 2016, 10, 313–325.

107. Ma, X.; Meng, D.; Zhu, L.; Xu, H.; Guo, J.; Yang, L.; Yu, L.; Fu, Y.; Mu, L. Bedtime Procrastination Predicts the Prevalence and Severity of Poor Sleep Quality of Chinese Undergraduate Students. *J. Am. Coll. Health* 2022, 70, 1104–1111.

108. Exelmans, L.; Van Den Bulck, J. Bedtime Mobile Phone Use and Sleep in Adults. *Soc. Sci. Med.* 2016, 148, 93–101.

109. Joshi, S.C.; Woodward, J.; Woltering, S. Nighttime Cell Phone Use and Sleep Quality in Young Adults. *Sleep Biol. Rhythm.* 2022, 20, 97–106.

110. Moulin, K.L.; Chung, C.-J. Technology Trumping Sleep: Impact of Electronic Media and Sleep in Late Adolescent Students. *J. Educ. Learn.* 2016, 6, 294.

111. Liu, H.; Zhou, Z.; Huang, L.; Zhu, E.; Yu, L.; Zhang, M. Prevalence of Smartphone Addiction and Its Effects on Subhealth and Insomnia: A Cross-Sectional Study among Medical Students. *BMC Psychiatry* 2022, 22, 305.

112. Rod, N.H.; Dissing, A.S.; Clark, A.; Gerds, T.A.; Lund, R. Overnight Smartphone Use: A New Public Health Challenge? A Novel Study Design Based on High-Resolution Smartphone Data. *PLoS ONE* 2018, 13, e0204811.

113. Alshammari, T.K.; Rogowska, A.M.; Basharahil, R.F.; Alomar, S.F.; Alseraye, S.S.; Al Juffali, L.A.; Alrasheed, N.M.; Alshammari, M.A. Examining Bedtime Procrastination, Study Engagement, and Studyholism in Undergraduate Students, and Their Association with Insomnia. *Front. Psychol.* 2023, 13, 1111038.

114. Hammoudi, S.F.; Mreydem, H.W.; Ali, B.T.A.; Saleh, N.O.; Chung, S.; Hallit, S.; Salameh, P. Smartphone Screen Time Among University Students in Lebanon and Its Association With Insomnia, Bedtime Procrastination, and Body Mass Index During the COVID-19 Pandemic: A Cross-Sectional Study. *Psychiatry Investig.* 2021, 18, 871–878.

115. Carney, C.E.; Harris, A.L.; Moss, T.G.; Edinger, J.D. Distinguishing Rumination from Worry in Clinical Insomnia. *Behav. Res. Ther.* 2010, 48, 540–546.

116. Meier, A.; Reinecke, L.; Meltzer, C.E. “Facebocrastination”? Predictors of Using Facebook for Procrastination and Its Effects on Students’ Well-Being. *Comput. Hum. Behav.* 2016, 64, 65–76.

117. Reinecke, L.; Hartmann, T.; Eden, A. The Guilty Couch Potato: The Role of Ego Depletion in Reducing Recovery Through Media Use. *J. Commun.* 2014, 64, 569–589.

118. Stainton, M.; Lay, C. Trait Procrastinators and Behavior/Trait-Specific Cognitions. *J. Soc. Behav. Personal.* 2000, 15, 297.

119. Guo, J.; Meng, D.; Ma, X.; Zhu, L.; Yang, L.; Mu, L. The Impact of Bedtime Procrastination on Depression Symptoms in Chinese Medical Students. *Sleep Breath.* 2020, 24, 1247–1255.

120. You, Z.; Li, X.; Ye, N.; Zhang, L. Understanding the Effect of Rumination on Sleep Quality: A Mediation Model of Negative Affect and Bedtime Procrastination. *Curr. Psychol.* 2023, 42, 136–144.

121. Kim, J.-H.; Seo, M.; David, P. Alleviating Depression Only to Become Problematic Mobile Phone Users: Can Face-to-Face Communication Be the Antidote? *Comput. Hum. Behav.* 2015, 51, 440–447.

122. Van Den Eijnden, R.J.J.M.; Meerkerk, G.-J.; Vermulst, A.A.; Spijkerman, R.; Engels, R.C.M.E. Online Communication, Compulsive Internet Use, and Psychosocial Well-Being among Adolescents: A Longitudinal Study. *Dev. Psychol.* 2008, 44, 655–665.

123. Yen, J.-Y.; Cheng-Fang, Y.; Chen, C.-S.; Chang, Y.-H.; Yeh, Y.-C.; Ko, C.-H. The Bidirectional Interactions between Addiction, Behaviour Approach and Behaviour Inhibition Systems among Adolescents in a Prospective Study. *Psychiatry Res.* 2012, 200, 588–592.

124. Lemola, S.; Perkinson-Goor, N.; Brand, S.; Dewald-Kaufmann, J.F.; Grob, A. Adolescents’ Electronic Media Use at Night, Sleep Disturbance, and Depressive Symptoms in the Smartphone Age. *J. Youth Adolesc.* 2015, 44, 405–418.

125. Liu, H.; Ji, Y.; Dust, S.B. "Fully Recharged" Evenings? The Effect of Evening Cyber Leisure on next-Day Vitality and Performance through Sleep Quantity and Quality, Bedtime Procrastination, and Psychological Detachment, and the Moderating Role of Mindfulness. *J. Appl. Psychol.* 2020, 106, 990.

126. Huang, T.; Liu, Y.; Tan, T.C.; Wang, D.; Zheng, K.; Liu, W. Mobile Phone Dependency and Sleep Quality in College Students during COVID-19 Outbreak: The Mediating Role of Bedtime Procrastination and Fear of Missing Out. *BMC Public Health* 2023, 23, 1200.

127. You, Z.; Mei, W.; Ye, N.; Zhang, L.; Andrasik, F. Mediating Effects of Rumination and Bedtime Procrastination on the Relationship between Internet Addiction and Poor Sleep Quality. *J. Behav. Addict.* 2021, 9, 1002–1010.

Retrieved from <https://encyclopedia.pub/entry/history/show/114563>