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This review aims to briefly discuss a short list of a broad variety of inflammatory cytokines. Numerous studies have

implicated that inflammatory cytokines exert important effects with regard to various inflammatory diseases, yet the

reports on their specific roles are not always consistent. They can be used as biomarkers to indicate or monitor

disease or its progress, and also may serve as clinically applicable parameters for therapies. Yet, their precise role

is not always clearly defined. Thus, in this entry, researchers focus on the existing literature dealing with the biology

of cytokines interleukin (IL)-6, IL-1, IL-33, tumor necrosis factor-alpha (TNF-α), IL-10, and IL-8. We will briefly focus

on the correlations and role of these inflammatory mediators in the genesis of various inflammatory impacts.

cytokine  TNF-α  IL-6  IL-1  IL-33  IL-10  IL-8  disease  inflammation

pathology

1. Introduction

Cytokines are small secreted proteins (<40 kDa), which are produced by nearly every cell to regulate and influence

immune response [ ]. The release of pro-inflammatory cytokines will lead to activation of immune cells and

production as well as the release of further cytokines [ ]. Therefore, in the past when the term “cytokine storm”

arose, it explained inflammation as a sudden release of cytokines to upregulate an inflammatory process [ ].

However, recent research indicates that a simultaneous release of pro- and anti-inflammatory cytokines are

mandatory in any immune response [ ].

Cytokines suffer from a somewhat inconsistent nomenclature; they are referred to as interleukins, chemokines, or

growth factors among many other names [ ]. Cytokines are made up of so-called superfamilies, not necessarily

describing common genes, but rather similar structures [ ]. Furthermore, different cell populations can produce the

same cytokine. The effects of cytokines depend on the targeted cell, making them pleiotropic [ ]. Also, different

cytokines may have the same effect and are therefore redundant. They may, however, also have a synergistic

effect. Finally, they potentially trigger signaling cascades, giving the smallest amounts of protein the chance to be

devastating in consequence [ ]. A brief overview on various cells expressing different cytokines has been provided

in Figure 1.
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Figure 1. A schematic representation of various cells expressing different cytokines. Interleukin (IL), Natural killer

cells (NK), Tumor necrosis factor-alpha (TNF-α).

2. Interleukin-6
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Interleukin-6 has been shown to play important roles in autoimmune diseases, bacterial infections and metabolic

side effects have been observed also [ ]. It is composed of four α-helices, comparable to other members of the IL-

6 family [ ]. It is translated as a 184 amino acid long protein that undergoes glycosylation and is secreted by T-

cells, monocytes, endothelial cells, and fibroblasts [ ]. Interestingly, IL-6 was first described for its effects on

adaptive immunity, like promoting cluster of differentiation (CD)4  T-cells via IL-21 production, and promoting T-cell

differentiation towards T-helper2 cells (Th2) and Th17 cells [ ]. The very first reference was as a B-cell stimulatory

factor by the Kishimoto group in 1986 [ ]. It has pro- and anti-inflammatory properties, which are described

further below. Signaling is achieved via two different mechanisms; one of which is IL-6 binding to its membrane-

bound IL-6 receptor (mbIL6R) [ ]. This complex subsequently recruits two molecules of membrane-bound

glycoprotein (gp) 130, a process that leads to downstream signaling via Janus kinases/signal transducer and

activator of transcription (STAT) kinases, phosphoinositide 3-kinase (PI3K), and MAP kinases like p38 [ , ]. A

major limitation for a sustainable reaction to IL-6 is the availability of the mbIL6R, which is only expressed on

certain cell types, while gp130 is found in almost every cell [ ]. This implies that the systemic influence of IL-6 via

classic signaling is rather limited [ ]. The second mechanism of IL-6 recognition is dependent on the soluble IL-6

receptor (sIL6R), which is expressed via mRNA splicing or proteolysis by a disintegrin and metalloproteinase

(ADAM) proteases [ ]. Interestingly, ADAM proteases cannot be activated only by other cytokines, such as IL-1β

or TNF-α [ ], they can be induced by bacterial toxins as well [ ]. In the case of sIL6R expression, IL-6 binds to

the sIL6R and builds an IL6/sIL6R complex, which in turn activates gp130 on mbIL6R-less cells [ ]. This process

is termed trans-signaling and is responsible for most of IL-6 inflammation-inducing capabilities [ ]. Currently,

similar to the C-reactive protein (CRP), IL-6 is used to “monitor” inflammation levels in patients with cancer,

infection, or autoimmune diseases [ , ]. The reason for using IL-6 as a biomarker is its central role in activating

and maintaining the inflammatory response. For instance, the clinical quantification of IL-6 is a strong predictor for

mortality in pancreatic and cardiovascular disease [ , ]. However, unfortunately, its anti-inflammatory

properties, further described below, are so far neglected in clinical practice. While early inflammation is dominated

by neutrophils, later states of inflammation are dominated by monocytes. IL-6 is essential in this so-called

leukocyte switch [ ]. Subsequently, it reduces neutrophil recruitment via suppression of chemokines attracting

polymorphonuclear leukocytes (PMNL), like the chemokine (C-X-C motif) ligand (CXCL)1 and CXCL8 (IL-8), while

upregulating monocyte attracting chemokines CC-chemokine ligand (CCL)2/monocyte chemotactic protein

(MCP)-1 and CCL8/MCP-2 in vitro and in vivo [ ]. Furthermore, cell adhesion molecules like vascular cell

adhesion molecule (VCAM) 1, intercellular cell adhesion molecules (ICAM) and E-selectin are upregulated by IL-6

in a fever range mice model [ ]. In models with gp130 knockout mice, the ability of IL-6 to enhance macrophage-

colony stimulating factor (M-CSF) receptor expression, thereby accelerating monocyte differentiation to

macrophages, was linked to its gp130 MAP kinase pathway [ ]. In a Staphylococcus epidermidis induced

peritoneal inflammation mice model, IL-6 was mandatory for the recruitment of T-cells [ ]. Interestingly, classic

signaling of IL-6 is needed for regenerative and protective processes in the body. For instance, in inflammatory

disease mice models and diverse knockout mice models, IL-6 was essential to liver regeneration, gut barrier repair,

and suppression of inflammation in the kidney and pancreas [ , , ].
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In clinical practice, the first association of IL-6 with cardiovascular disease and cancer was found in 1990 [ ].

Enhanced levels of IL-6 were found in three patients with cardiac myxomas and removal of the tumor abolished the

IL-6 levels [ ]. In fact, increased pretreatment levels of IL-6 can be a predictor of survival in head and neck

cancer [ ]. Yet, it often remains unclear if IL-6 is only correlative to cancer or rather essential in cancer genesis. A

study by Zhang et al. demonstrated that escalated levels of IL-6R in sera from nasopharyngeal carcinoma (NPC)

patients are not just correlative [ ]. The cytokine serves as a catalyst for the malignant transformation of Epstein–

Barr infected nasopharyngeal cells to cancerous cells in vitro via STAT kinases [ ].

Osteoporosis is a common disease in the aging population and studies have shown that IL-6 is potentially

implicated in its pathogenesis [ ]. IL-6 stimulates bone resorption. Several studies have examined the association

between IL-6 gene polymorphisms and bone mineral density [ , , ].

Another prominent use of IL-6 as a biomarker is in sepsis or after major trauma. Studies in the nineties

demonstrated 1000-fold increased IL-6 levels in septic patients and correlation with the gravity of organ failure [ ].

Likewise, the detection of IL-6 is correlative to invasiveness and duration of surgery [ ]. Levels of IL-6 after

trauma usually do not reach those of septic patients [ ]. Unlike CRP, IL-6 can also help to distinguish infection

from fever of unknown origin in pediatric practice [ ]. Several studies confirm a predictive value of IL-6 for

mortality and organ dysfunction in sepsis or after major trauma [ , ]. While IL-6 has undoubted prognostic value

in early inflammation, clinical use has not seen any breakthroughs. Many physicians prefer a combination of clinical

presentation, white blood count, CRP levels, and fever measurement over the expensive IL-6 determination [ ].

3. Interleukin 1 Family

Interleukin-1α and IL-1β were the first cytokines to be discovered in 1974 by Charles A. Dinarello, and since then,

they have been greatly studied [56]. In this review, we will focus on the following members of the IL-1 family: IL-1α,

IL-1β, and IL-33.

Interleukin-1α and IL-1β are encoded by different genes but can be bound by the same IL-1 receptor (IL-1R) [ ].

While IL-1α has a higher affinity for IL1-R1, IL-1β has a higher affinity for the soluble IL-1R2 [ ]. Both are

translated as 31 kDa precursor protein and cleaved into smaller 17 kDa forms, albeit with different amino acid

sequences [ ].

The IL-1α precursor is usually found in intracellular space, as well as constitutively in many cell types including

hepatocytes, nephrotic epithelium, endothelium, and epithelial cells of the gastro-digestive tract [ ].

Even in cases of severe infection, relatively low concentrations are found in extracellular space [ ]. Upon stimuli

such as oxidative stress or cytokine exposure, e.g., other IL-1 family cytokines, the expression of the IL-1α mRNA

is inducible [ ]. Nevertheless, it is not clear if post-translational modifications are needed for IL-1α to become

active. In contrast to IL-1β and IL-33, the precursor form of IL-1α and recombinant human mature IL-1α have the

same biological activity in inducing IL-6 and TNF-α in human peripheral blood mononuclear cells (PBMCs) and
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lung cancer cells [ ]. Nevertheless, the secretion of IL-1α protein is well regulated. During apoptosis, cytosolic IL-

1α translocates to the nucleus and binds firmly to chromatin [ ], while during necrosis, it becomes released from

the nucleus into the local tissue upon degradation of the cell membrane [ ]. This exemplifies the properties of IL-

1α as an alarmin. Whereas the release of IL-1α during the process of necrosis is explained by the loss of plasma

membrane stability, the leakage of IL-1α in “healthy” cells is induced via pyroptosis [ ]. This is a process of the

so-called inflammation-induced apoptosis, which leads to enhanced cell membrane permeability through the

formation of an inflammasome complex in an, e.g., caspase-1-dependent mechanism [ ]. Caspase-1 knock-out

mice displayed significantly less IL-1α protein release by monocytes upon their stimulation with LPS and ATP as

compared to the wild-type mice [ ]. The soluble decoy receptor IL-1R2 functions as a receptor in plasma, and

limits spreading of IL-1α, thereby reducing its signaling and restraining inflammation [ ]. Another unique trait

among the IL-1 family is that the pro-IL-1α in its full length is implemented in the cell membrane in case of

inflammation, and can operate as a fully active membrane-bound cytokine [ ].

The primary sources of IL-1β are hematopoietic cells like monocytes, macrophages such as microglia or Kupffer

cells and dendritic cells upon activation of PRR by PAMP or DAMP [ ]. Furthermore, alpha cells of pancreas

secrete IL-1β, and this can be studied in diabetic and obese patients [ ]. Recent trials imply the contribution of

epithelium and endothelial IL-1β to cardiovascular disease [ ].

In contrast to IL-1α, IL-1β precursor is not biologically active, as its activation requires a proteolytic step by the IL-

1β converting enzyme, e.g., caspase-1 within the multiprotein inflammasome complex [ ]. Upon activation of

myeloid differentiation primary response (MyD)88 in case of hypoxia, complement activation, or even IL-1β itself,

pro-IL-1β mRNA is induced [ , ]. The translation occurs in the cytosol, however, it is discussed if a second signal

is required for pro-IL-1β to be cleaved to IL-1β, and thereby activated [ ]. Second signals can include DAMP or

alarmin molecules, such as ATP, which binds to P2 × 7 receptors, thereby providing a signal to open potassium

channels lowering intracellular potassium levels [ ]. In consequence, the formation of NOD-like receptor (NLR)

sensor molecule, such as NOD-, leucine-rich repeat (LRR)- and pyrin domaine-containing protein (NLRP)3 [ ],

and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) to the

inflammasome complex occurs [ ]. As a result, pro-caspase-1 is activated into caspase-1 and cleaves, e.g., pro-

IL-1β or pro-IL-18 cytokine precursors to their active forms, thereby initiating or enhancing the pro-inflammatory

response [ ].

In the last decades huge advances have been made in understanding the role of inflammasomes in the

pathogenesis of infectious, autoinflammatory and autoimmune diseases. Familial cold autoinflammatory syndrome

(FCAS), Muckle–Wells syndrome (MWS) and neonatal-onset multisystem inflammatory disorder (NOMID, also

known as chronic infantile neurologic, cutaneous, and articular (CINCA) syndrome) have been shown to be caused

by gain of function mutations in the NLPR3 gene encoding for cryopyrin, leading to increased caspase-1 and IL-1β

activity [ , , , ]. Due to their similar etiology these diseases are today recognized as a group of diseases

named pryopyrin-associated periodic syndrome (CAPS). Current treatment of CAPS is successfully and safely

based upon three different medications named rilonacept (captures IL-1β as a decoy receptor), anakinra (IL-1R

antagonist), and canakinumab (monoclonal antibody against IL-1β) [ , ]. Regarding the role of NRLP3 in the
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development of atherosclerosis Duewell et al. reported decreased development of atherosclerotic lesions in mice

lacking inflammasome related molecules NLRP3, ASC or IL-1α/β and showed that cholesterol crystals as a

possible DAMP strongly activated NLRP3 inflammasomes in macrophages [ ]. Further studies in similar mouse

models as well showed decreased severity of atherosclerosis in mice lacking NLRP3, caspase-1 or IL-1β [ , ,

], while in another study NLRP3 inflammasomes were not critically implicated in atherosclerosis progression

[ ]. Furthermore, the NLPR3 inflammasome is activated by oxidized low-density lipoprotein (LDL) and high levels

of triglyceride, both being major risk factors for atherosclerosis [ , , ].

The role of inflammasomes in the pathogenesis of rheumatoid arthritis has been studied extensively in the past

decades in humans as well as in specific animal models. Guo et al. recently showed that the NLRP3

inflammasome was highly activated in synovia from patients with rheumatoid arthritis and in an animal model with

collagen-induced arthritis (CIA) in mice [ ]. Furthermore, treatment with MCC950, a selective NLRP3 inhibitor, in

the animal model resulted in significantly less severe joints inflammation and bone destruction [ ]. In a study by

Ippagunta et al. the authors investigated the role of different components of the NLRP3 inflammasome and showed

that NLRP3  and caspase-1  mice were predisposed to collagen-induced arthritis while ASC  mice were

protected from arthritis [ ]. Another study by Joosten et al. investigated the role of caspase-1, the downstream

effector of inflammasomes, in the development of rheumatoid arthritis and obtained conflictive results showing no

effect of caspase 1 deficiency in a model of acute (neutrophil-dominated) arthritis but reduced joint inflammation

and cartilage destruction in a mouse model of chronic arthritis [ ]. The crucial role of NRP3 inflammasomes in the

development of rheumatoid arthritis was investigated by Vande Walle et al. showing that knock out of A20, a

rheumatoid arthritis susceptibility gene, in mice led to increased expression of NLRP3 and pro-IL-1β genes and

resulted in induction of NLRP3 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β secretion [ ].

Furthermore, deletion of NLRP3, caspase-1 and the interleukin-1 receptor markedly protected against rheumatoid-

arthritis-associated inflammation and cartilage destruction in A20  mice and the authors depicted A20 as a

novel negative regulator of NLRP3 inflammasome activation in rheumatoid arthritis [ ]. Patients with active

rheumatoid arthritis have higher intracellular levels of NLRP3 inflammasome components (including NLRP3, ASC,

active caspase-1, and pro-IL-1β) as well as increased secretion of IL-1β [ ] and monocytes from patients with

rheumatoid arthritis show increased IL-1β production mediated by activation of NLRP3 inflammasome [ ]. Shin et

al. investigated the role of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) as a

treatment for rheumatoid arthritis in mice with collagen-induced arthritis (CIA) and observed a reduced severity of

CIA mediated by a downregulation of the NRLP3 inflammasome [ ].

While a huge part of current and past research focused on NLRP3 inflammasomes, it could be shown that the G

allele of a polymorphism (rs878329) in the NLRP1 promoter in the Chinese population up-regulates gene

transcription and puts patients at risk for developing rheumatoid arthritis [ ]. Treatment of CIA mice with BVT-

2733, a selective inhibitor of 11β-hydroxysteroid dehydrogenase 1, attenuated arthritis severity by inhibition of the

NF-κB and NLRP1 inflammasome signaling pathways [ ]. Investigation of treatment with P2X4 antisense

oligonucleotide (asODN) in the same CIA model indicated significantly reduced synovial inflammation and joint

destruction by inhibition of NRLP1 inflammasome as the underlying mechanism [ ].
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Recently, mutations in the NLRP1 gene were shown to cause a novel autoinflammatory disorder that the authors

proposed to call NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis) which causes arthritis

and dyskeratosis [ ]. Unfortunately, there are only a few studies analyzing the importance of inflammasomes in

the pathogenesis of osteoporosis. IL-18BP, the natural antagonist of proinflammatory IL-18, was shown to be

reduced in osteoporotic women [ ]. Animal experiments from the same group showed that mIL-18BPd enhances

osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 in vitro [ ]. In vivo

mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters and reduced

osteoclastogenesis [ ].

Xu et al. investigated melatonin treatment in ovariectomized C57BL/6J mice and demonstrated that melatonin

improved osteoporosis and impaired osteogenic differentiation potential by suppressing activation of the NLRP3

inflammasome via mediating the wingless-related integration site (Wnt)/β-catenin pathway [ ]. Humanized mice

carrying an NLRP3 mutation (D305N/D305N mice) developed arthritis and osteoporosis shown by increased

radiolucency and thinner cortices in all bones of the lower hindlimb compared to control animals [ ]. Kim et al.

investigated auranofin, a gold-based compound approved in 1975 for the treatment of rheumatic diseases and

found that auranofin suppresses inflammasome mediated IL-1β secretion in mouse bone marrow-derived

macrophages (BMDMs) and J774.A1 cells [102]. Furthermore, administration of auranofin in ovariectomized mice

led to recovery of bone mass [ ].

In in vitro studies with human mesenchymal stem cells (MSCs), activation of NLRP3 inflammasome by

lipopolysaccharide and palmitic acid (LPS/PA) treatment led to increased adipogenesis of MSCs and suppressed

osteogenesis [ ]. The role of inflammasomes in the pathogenesis of age-related diseases especially of the eyes

(e.g., glaucoma or age-related macula degeneration) has been extensively studied in the past years and is

reviewed profoundly elsewhere. In a mouse model of acute glaucoma the role of HMGB1 has been investigated

and it was shown that HMGB1 activates the canonical NLRP3 and non-canonical caspase-8 inflammasomes and

production of IL-1β during acute glaucoma development [ ]. In a previous study by the same group was shown

that inhibition of caspase-8 activation significantly attenuates retinal ganglion cell death by down-regulating the

activation of NLRP1 and NLRP3 [ ].

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide [ ] and huge

progress has been made in the last decades to understand the role of inflammasomes in the pathogenesis of the

disease. Doyle et al. showed that drusen, which are the major pathological hallmark of AMD, isolated from donor

AMD eyes activate the NLRP3 inflammasome leading to secretion of IL-1β and IL-18 [ ]. Interestingly in a mouse

model of wet AMD in NLRP3  mice laser-induced choroidal neovascularization (CNV) was exacerbated so the

authors concluded that NLRP3 and IL-18 might have a protective role in the progression of AMD [ ]. The latest

findings with regard to the connection between inflammasomes and AMD are thoroughly reviewed elsewhere [ ,

]. Trauma is one of the leading causes for death worldwide and although it is indisputable that trauma-injury is

closely associated with inflammasomes, there is no clear hypothesis whether the activation of inflammasomes is

harmful or beneficial after trauma.
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In an ex vivo in vitro experiment with LPS stimulation of CD14 -isolated monocytes from trauma patients (TP),

gene expression of NLRP1 was markedly reduced compared to healthy controls [ ]. Furthermore, transfected

monocytes from TP, which expressed the lacking components, were recovered in their LPS-induced IL-1β release,

and thus, the authors concluded that lacking NLRP1 is responsible for the suppressed monocyte activity after

trauma [ ]. NLRP1 has been shown to be an important component of the innate central nervous system

inflammatory response after traumatic brain injury (TBI) as its neutralization reduced the innate immune response

and improved histopathology after TBI in a mouse model [ ]. Furthermore, the NLRP1 inflammasome was found

to cause lung injury in a mouse model while lung damage was rather caused by pyroptosis of resident lung

macrophages and not by caspase-1 or IL-1β [ ]. NLRP1  mice were protected from these detrimental effects,

indicating the pivotal role of NLRP1 in lung injury [ ].

Recent investigations regarding inflammasome proteins as potential biomarker for TBI determined that apoptosis-

associated speck-like protein containing a caspase recruitment domain (ASC) in serum and cerebral spinal fluid

(CSF) as well as IL-18 in CSF are promising biomarkers of TBI pathology [ ]. Moreover, higher protein levels of

ASC were consistent with poorer outcomes after TBI [ ]. Zhang et al. reported that genetic variations in the

NLRP3-gene predict the development of sepsis and multi organ dysfunction syndrome (MODS) in trauma patients

[ ]. Continuous injury caused by mechanical ventilation, which is common in severely injured trauma patients, is

supposed to be mediated by an increase in serum levels of DAMP (e.g., ATP or reactive oxygen species (ROS)),

followed by activation of the NLRP3 inflammasome [ , , ]. To investigate the underlying mechanism of why

up to 30% of patients with TBI develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), Kerr

et al. studied extracellular vesicle (EV)-mediated inflammasome signaling in male C57BL/6 mice [ ].

TBI leads to the release of EVs containing inflammasome proteins into serum that target the lung to cause ALI and

administration of a blocker of EV uptake (enoxaparin) or monoclonal antibody against ASC improved ALI scores,

thus, the authors concluded that neural-respiratory-inflammasome axis is an important part of the innate

inflammatory response in lung pathology after TBI [ ]. In an animal model of TBI, resveratrol was indicated to

attenuate the inflammatory response and relieve TBI by reducing ROS production and inhibiting NLRP3 activation

[ ]. In burn-injured mice blocking of caspase-1, the downstream effectors of inflammasomes, caused

significantly higher mortality, thus, Osuka et al. concluded that inflammasome activation plays a protective role in

the host response to severe injury [ ]. In contrast, treatment with MCC950, an inhibitor of the NLRP3

inflammasome, led to a better neurological outcome after TBI by alleviating brain edema, reducing lesion volume,

and improving long-term motor and cognitive functions in a mouse model with TBI [ ].

Inhibition of the NLRP3 inflammasome by treatment with BAY 11-7082 or A438079 alleviated the severity of spinal

cord damage and improved neurological recovery after in a mouse model of spinal cord injury [ ]. Another recent

study showed protective effects in cholestatic liver injury and liver fibrosis by blocking NLRP3 inflammasome

activation by treatment with MCC950 [ ]. As these are still preclinical studies the value for clinical treatment has

to be investigated intensively. In a rat model of subarachnoid hemorrhage minocycline protected against NLRP3

inflammasome-induced inflammation and p53-associated apoptosis, and therefore, the authors concluded that

treatment with minocycline treatment may exhibit important clinical potentials in the management of subarachnoid
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hemorrhage [ ]. Denes et al. investigated the role of NLRC4 and AIM2 in a rodent model of stroke and showed

that that ischemic brain injury has been reduced in ASC  and NLRC4  mice without seeing such protective

effects, in mice deficient for NLRP3 [ ]. Although huge advances have already been made in recent decades,

the specific role of the inflammasome in the development of several diseases and therapeutic options still has to be

investigated intensively in future.

As the biological activities of both IL-1α and IL-1β are rather similar, this review will refer to them as IL-1 in the

following paragraph. Models with IL-1 deficient mice displayed no difference to control mice in terms of growth,

homeostasis or fertility, however, they were rather prone to bacterial, mycotic and protozoa infections [ , ]. The

ability of IL-1 to stimulate synthesis of inducible nitric oxide synthase (iNOS), Cyclooxygenase (COX)-2 and

phospholipase (PL)A2 results in enhanced production of nitric oxide (NO), platelet activating factor as well as

prostaglandin (PG)E2 in ex vivo in vitro analyses of chondrocytes from patients with osteoarthritis [ ].

Accordingly, the patients in an inflammatory state experienced vasodilation and hypotension, fever and heightened

pain sensitivity [ ]. To raise systemic dissemination and infiltration of immune cells, chemokine production is

upregulated as well as expression of ICAM-1 and VCAM-1 in mesenchymal stem cell models in vitro [ ].

Another trait is the augmented permeability of the intestinal barrier and a blood-brain barrier to simplify neutrophil

recruitment in these compartments as observed in in vitro models with Caco2-monolayers [ ]. A mice model with

LPS challenge revealed the angiogenic potential of IL-1 to contribute to blood vessel formation under hypoxic

conditions [ ]. However, modulation of lymphocytic response like B-cell proliferation is strictly seen as an effect

of IL-6 that is inducted by IL-1 as seen in an animal model with either IL-6 or IL-1 knockout mice [ ]. In fact, 1

ng/kg bodyweight IL-1 is enough to ensure high systemic levels of IL-6 in mice [ ]. Thus, this stresses the

important role of IL-1 in disease rather than in healthy individuals. The diagnostic value of IL-1 is rather limited due

to its half-life of around 10 min [ ]. However, some clinical studies determined IL-1 levels in sera via ELISA. One

of those is a work by a Turkish group in neonatal sepsis (n = 50) that revealed significantly enhanced levels of IL-1

in septic patients [ ]. Another study displayed significant levels of IL-1 in sera of malaria patients compared to

control in a cohort of 60 patients [ ]. Interestingly, IL1-Ra was not only significantly increased in patients with

septic shock on admission day and day 28 but was also a predictor of mortality [ ].

Emerging evidence highlights the role of these inflammatory cytokines in the regulation of bone homeostasis.

Chronic inflammation is often characterized by an imbalance between bone formation and bone resorption. Here, a

net prevalence of osteoclastogenesis has been described, which is an important determinant of bone loss in

rheumatic diseases [ ]. Yet, the totality of evidence is limited and provides no clear indication of which cytokine

is the most important for bone biology. The link between osteoclasts and pro-inflammatory cytokines, especially IL-

1, provides an explanation for the association between inflammation and osteoporosis. For inflammatory diseases,

bisphosphonates may be chosen as therapy, however specific medications such as denosumab, IL-1 receptor

antagonists, or TNF-α antibodies are targeted treatment strategies for osteoporosis secondary to inflammation
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In a meta-analysis to examine the efficacy and safety of denosumab in postmenopausal women with osteoporosis

by Gu et al., adverse events between verum and placebo group were similar (pooled odds ratio  =  1.04, p  =  0.625)

[ ]. In a large cohort study Choi et al. observed comparable clinical safety and effectiveness with regard to the

risk of serious infection, cardiovascular disease, and osteoporosis fracture within 365 days after initiation of

medications between denosumab and zolendronic acid (an established standard of therapy) [ ]. Kullenberg et al.

investigated the safety of treatment with anakinra, a IL-1 receptor antagonist, in 43 patients for up to five years and

observed 24 serious AEs (SAEs), all of which resolved during the study period, in 14 patients with the most

common SAEs being infections such as pneumonia and gastroenteritis [141]. The authors concluded treatment

with anakinra of patients with severe CAPS for up to 5 years was safe and well tolerated, both in pediatric and

adult patients [ ]. To assess the safety of treatment with TNF-α antibodies is difficult due to the many different

antibodies which are authorized for treatment of e.g., rheumatoid arthritis. Hernández et al. observed a reasonable

safety profile for TNF-α antibodies and argue that the benefits far outweigh the possible risk of adverse events

[ ]. There are several studies and meta-analysis dealing with these TNF-α antibodies and which are extensively

reviewed elsewhere.

Interleukin-33 is the newest member of the IL-1 family and located on chromosome 9 [ ]. Human IL-33 is located

in the cell nucleus but is also found outside the cell as an alarmin [ ]. Furthermore, it is synthesized as a 31 kDa

protein [ ]. The main sources of IL-33 are non-hematopoietic cells such as endothelial and epithelial cells [ ].

IL-33 is a ligand to orphan receptor ST2 [ ] of the TLR/IL1R superfamily of receptors, thereby potentially

activating canonical NF-κB pathway via MyD88 [ ]. Nevertheless, it was first described as a nuclear factor from

high endothelial venules (NF-HEV) [ ]. The name accurately describes its properties being both, a membrane

receptor ligand and a nuclear factor for transcription [ ]. Furthermore, distinct to other members of the IL-1 family

such as IL-1β or IL-18, n-terminal end of IL-33 does not necessitate processing to be active [ ]. Nonetheless, IL-

33 lacks a secretory sequence for conventional pathways to be secreted into extracellular space [ ]. One would

suspect necrosis as a primary form causing its release, however, in vivo and in vitro models indicate that living cells

secrete IL-33 as well [ ]. Recent research of inflammation models like post-viral mice with chronic lung disease

and in patients with chronic lung disease indicate that extracellular ATP may play a role in IL-33 expression [ ].

Ex vivo analysis of airway basal cells of the mice revealed significant IL-33 secretion upon ATP exposure [ ].

Its biological impact is associated with the type 2 immune response, mainly reliant on the activation of Th2 cells,

eosinophils, mast cells, basophils and group 2 innate lymphoid cells (ILC-2) [ , ]. These cell populations

express ST2 and show the importance of IL-33 in allergic and autoimmune disease [ , ]. For instance,

chronic exposure of cigarette smoke to mice leads to enhanced systemic IL-33 levels [ ]. Additionally, IL-33

skews T-cells toward Th2 differentiation, and high concentrations of this cytokine act as a chemoattractant for Th2

cells [ , ]. There is growing evidence that cells such as Th1, neutrophils, macrophages and natural killer cells

(NK) express little ST2 in physiological conditions [ ]. Yet, after priming with IL-12 in case of infection, the

expression of the ST2 receptor, and thus susceptibility for IL-33 is highly increased [ , ]. This is emphasized

by the ability of IL-33 to induce IFN-γ protein expression by aforementioned cells [ ]. Subsequently, this

mechanism is protective for the host as Bonilla et al. showed that IL-33 is needed for antiviral responses of CD8

cells in mice [ ].
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As briefly described above, there are several cytokines involved in the pathogenesis of osteoporosis. Yet, the

involvement of IL-33 in osteoporotic patients has been studied well. Recently, IL-33 levels in the serum of 50

postmenopausal osteoporotic patients and 28 healthy postmenopausal control women were measured [ ]. In

postmenopausal osteoporotic women IL-33 was lower compared to controls and positively correlated respectively

with serum levels of parathyroid hormone, while an inverse correlation was observed between IL-33 and C-terminal

telopeptide of type 1 collagen levels. The authors suggest that IL-33 may represent an important bone-protecting

cytokine which may hide therapeutic benefits for treating bone resorption.

4. Tumor Necrosis Factor-alpha

Tumor necrosis factor-alpha was first described in 1975 by Carswell et al. for its cytotoxic activity to tumor cells via

immune cells and thus was named TNF [ ]. It is expressed as a type II transmembrane protein (mbTNFα) but

can be cut to its soluble form (sTNFα) with increased biological activity [ ]. The enzyme responsible for its

cutting is TNF converting enzyme (TACE) or ADAM17 [ ]. The membrane-bound mbTNFα has a 233 amino acid

sequence, weighs 26 kDa and forms homotrimers [ ]. This mbTNFα complex is cut to 51 kDa by TACE [ ].

The main supply of TNF-α are macrophages and T-cells, yet many other cells such as B-cells, neutrophils, and

endothelial cells have been described to produce TNF-α [ ]. Targets for TNF-α include two type I

transmembrane receptors, TNF receptor I (TNFR-I or CD120a) and TNF receptor II (TNFR-II or CD120b) [ ].

Whereas TFNR-I is expressed on every cell except erythrocytes, TNFR-II is found only on endothelial and immune

cells and can be activated by mbTNF [ ].

The functional relevance is broad, and one prominent trait is the mediation of cell survival and pro-inflammatory

response by TNFR-I via NF-κB and activator protein (AP)-1 [ ]. Additionally, TNF-α instigates signaling pathways

of cell death via Fas and Caspases [ , ]. For instance, this was demonstrated in in vitro ex vivo analyses of

hematopoietic stem and progenitor cells of TNF-α knockout mice [ ]. In a clinical study including 34 patients with

at least 20% of total burn surface area, it was shown that systemic TNF levels correlated with burn severity and

predicted a susceptibility to infection [ ]. Just like in the case of IL-1, the determination of TNF-α levels can be

very tricky because of a half-life of only 14 min [ ]. Therefore, fast acquisition of blood samples to quantify TNF-α

is imperative to use it as a potential biomarker. A German group reported significant levels of TNF-α and sTNF-α in

blood samples taken 4, 12, and 24 h after admission to hospital as compared to control in patients with traumatic

injury (n = 47) [ ].

Adjacent to triggering the release of acute phase proteins after trauma, burns or infarction inter alia, TNF-α can

initiate blood clotting [ ]. Clinically, this can lead to a disseminated intravascular coagulation in case of severe

inflammation like sepsis, cutting vital organs from blood perfusion, and thus driving them to failure [ , ]. To

ensure necessary infiltration of immune cells to the local site of inflammation, e.g., in case of traumatic injury,

vasodilation is essential [ ]. Potent vasodilators are NO and prostaglandins like prostaglandin (PG)I  or PGE ,

which can be induced by TNF-α via iNOS and COX-2 upregulation [ ]. In addition, expressions of adhesion

molecules like E-selectin or ICAM-1 are upregulated by TNF-α aiding extravasation of monocytes and neutrophils

in an endothelial cell model [ ]. Yet, to effectively abolish bacterial infection, PMNLs use ROS as a means to
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destruct pathogens [ ]. The essential protein for production of ROS is the nicotinamide adenine dinucleotide

phosphate (NADPH)-oxidase [176]. In an endothelial cell model, TNF-α was shown to be a potent inductor of

NADPH oxidase (NOX) proteins gp91 , p22  and p67  that are needed for NADPH oxidase activation

[ ].

In the late eighties, the first in vivo studies with TNF-α antagonists were carried out showing promising results. In

1985, Beutler et al. showed that mice treated with anti-TNF-α serum had higher survival rates after LPS

administration compared to control group mice [ ]. Shortly after, Tracey et al. infused female baboons with anti-

TNF-α antibodies, and injected them with a lethal dose of Escherichia coli (LD ) [ ]. Baboons with antibodies

were protected against shock, vital organ dysfunction, persistent stress hormone release and death as compared

to control animals [ ]. Yet, other studies with TNF-α knockout mice have provided evidence that, while animals

may be protected against shock, they were far more susceptible to bacterial challenge [ ]. Subsequent clinical

studies with septic and shock patients have uncovered that there was no significant benefit for critically ill and

septic patients treated with experimental TNF-α and sTNF-α antagonists [ ]. It has to be considered that the

used substances were not the known modern TNF-α antagonists. However, TNF-α antagonists such as etanercept,

infliximab, or adalimumab proved to be a highly effective treatment for auto-inflammatory diseases like psoriasis,

Crohn’s disease, or rheumatoid arthritis [ ].

The role of the immune system in the onset of osteoporosis, a serious worldwide public health concern, is an area

of current research. In a panel including 10 cytokines obtained from postmenopausal women, with either normal or

low bone mineral density IL-23, IL-12, IL-4, IL-6, and also TNF-α levels were the most important differentiating

cytokines [ ]. However, no significant difference between the osteopenic and osteoporotic groups were found

[ ]. In general TNF-α suppresses osteoblasts activity at some stages of differentiation and stimulates osteoclast

proliferation and differentiation [ ]. Similar to IL-6, TNF-α can regulate bone metabolism through the endocrine

way [ ]. In a retrospective cohort analysis including a total of 199 rheumatoid arthritis patients, who were newly

diagnosed with osteoporosis and receiving bisphosphonate changes in bone mineral density after one year were

compared between patients treated with and without TNF inhibitors [ ]. The therapy did not influence bone

mineral density improvement in rheumatoid arthritis patients with osteoporosis receiving bisphosphonate [ ].

However, although this data suggested that TNF inhibition cannot be considered as a preferred therapeutic option

for increasing bone mineral density, conflictive findings have been reported showing that the use of

bisphosphonate might be important to improve bone mineral density in patients with rheumatoid arthritis even

under tight control [ ]. Recently it was shown that altered T-cell activity and a different composition such as the

CD14 CD16  vs. CD14 CD16  monocytes and priming of osteoclast precursors with increased macrophage

colony-stimulating factor (M-CSF), receptor activator of NF-κB ligand (RANKL), and TNF-α levels in peripheral

blood play a role in increased osteoclast formation and activity [ ]. In summary, these findings may help the

development of cytokine therapies for osteoporosis, and propose that the use of certain cytokine profiles as

biomarkers for osteoporosis risk factors, may quantify the progress of therapies.

5. Interleukin-10

[161]

phox phox phox

[162]

[163]

100
[158]

[158]

[164]

[165]

[163]

[166]

[166]

[167]

[168]

[169]

[169]

[170]

+ + + -

[171]



Cytokines in Inflammatory Disease | Encyclopedia.pub

https://encyclopedia.pub/entry/167 13/39

In 1989, IL-10 was first described by Fiorentino et al. as a cytokine synthesis inhibitory factor (CSIF) [ ]. It is

made up as a homodimer with each unit having a 178 amino acid sequence [ ]. Interestingly, IL-10 is one of few

anti-inflammatory cytokines next to IL-2, TGF, and the more recently discovered IL-25, IL-35, and IL-37 [ ].

Biologically, IL-10 is usually found as a dimer and shares some structural and functional properties of interferon

(IFN)-γ [ ]. It is produced by almost all leukocytes including macrophages, dendritic cells, neutrophils, NK cells,

B-cells, and CD8  T-cells, however, CD4  T-cells are the major producers [ , ]. For instance, FoxP3  regulatory

CD4  T-cells (Tregs, thymus, and periphery-derived) and Foxp3  regulatory CD4  T-cells (Tr1 cells) attenuate T-

cells and Th17 cell response in particular via IL-10 [ , ]. This review, however, will focus on the contribution of

the cells of innate immunity.

Interestingly, some viruses like Epstein–Barr or Human Cytomegalovirus among others produce IL-10 homologs,

which are almost identical to human IL-10 [ ]. The receptor responsible for downstream signaling of IL-10 is the

IL-10 receptor (IL10R), which is made up of dimers IL10R1 and IL10R2 [ ]. The former is an IL-10 specific

receptor and the primary binding site for IL-10, while the latter enhances the affinity of IL-10 to bind to IL10R1

[ ]. In fact, IL10R2 cannot associate with IL-10 independently, and is expressed on many tissue cells [ ], while

IL10R1 is mostly expressed on immune cells such as T-cells [ ], neutrophils upon LPS administration in vitro

[ ] or monocytes in a LPS endotoxemia mouse model [ . Nevertheless, IL10R2 is a co-ligand to many other

molecules like IL-22, IL-26, or IL-29, thereby playing a role in various biological pathways [ , ].

Downstream mediators of the IL-10 receptor are mainly STAT molecules and Janus Kinases (JAK) [ ]. As a

matter of fact, IL-10R1 is associated with JAK1 and IL10R2 with Tyk2 [ , ]. After activation by JAK, STAT dimer

molecules like STAT1 and STAT5 in cytoplasm undergo a conformational switch, relocate to the nucleus and bind

to DNA as transcription factors to IL10-responsive genes [ , ]. The number of genes regulated by IL-10 is

numbering up to thousands with new genes discovered each year [ , ].

The biological effects of IL-10 on innate immune cells suppress the release of immune mediators, antigen

expression and phagocytosis [ ]. Indeed, in vitro inflammation models show that IL-10 prevents PMNL activation

and TNF-α as well as IL-8 release after LPS administration [ ]. Studies with human umbilical vein epithelial cells

(HUVEC) display that IL-10 attenuates TNF-α induced ROS production, ICAM-1 expression, and leukocyte

adhesion to HUVEC [ ]. Recent research of monocyte models in vitro designate upregulation of ubiquitin ligases

by IL-10 as the mechanism to sequestrate major histocompatibility complex (MHC) complexes and thus inhibit

antigen presentation by antigen presenting cells (APCs) [ ]. The overall influence on chemotaxis of monocytes

is, however, rather low [ ]. What is more, IL-10 knockout mice suffer from cardiac and vascular dysfunction due

to an upsurge of COX-2 activity and production of prostaglandins indicating an important role in the suppression of

COX by IL-10 [ ]. Additionally, phagocytic cells are protected against complement lysis infused by an anti-MHC

antibody or binding of zymosan when administered IL-10 compared to control cells in vitro [ ]. Nevertheless, IL-

10 plays an important role in suppressing inflammation in mucosa cells evident by IL-10 knockout mice that will

develop severe colitis [ ]. To limit its own properties, IL-10R activation also triggers the transcription of

suppressor of cytokine signaling (SOCS)3, thus limiting its own release [ ]. Albeit, systemic levels of IL-10 were
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significantly increased in patients with severe sepsis and linked to mortality as compared to patients with moderate

sepsis [ ]. A smaller study comparing 16 septic shock patients with 11 shock patients without sepsis supports

the predictive value of systemic IL-10 levels in the first days after admission [ ]. In case of trauma, a Swiss study

reported elevated systemic IL-10 levels in patients with injury (n = 417) and a correlation of IL-10 levels to the

severity of the injury as compared to healthy volunteers [ ]. The development of sepsis in trauma patients was

also linked to elevated systemic IL-10 levels on admission in an American study (n = 66) [ ]. With regard to bone

biology, loss of IL-10 exacerbated early Type-1 diabetes-induced bone loss [ ]. Serum IL-10 levels in systemic

lupus erythematosus patients with osteonecrosis were higher than that in those without osteonecrosis [ ].

6. Interleukin-8

Interleukin-8 was first observed for its trait as a chemoattractant for granulocytes, primarily neutrophils in vitro

[ ]. It is sometimes called chemokine (C-X-C motif) ligand 8 or CXCL-8 and encoded by the CXCL-8 gene [ ].

Through transfected cell culture models, NF-κB and JNK, as well as AP-1, have been identified as vital pathways

for inducible IL-8 expression [ ]. Every cell with TLR can produce and secrete IL-8 including macrophages and

smooth muscle cells [ ], while endothelial cells accumulate IL-8 in vesicles known as Weibel–Palade bodies

[ ]. Indeed, IL-8 is translated as a 99 amino acid long precursor peptide and cleaved into two active isoforms;

one being 77 amino acids long and secreted by endothelial cells in cell culture [ ]. While the other has a 72

amino acid sequence and is produced by monocytes and other leukocytes [ ].

The main targets for IL-8 are G-protein coupled receptors CXCR1 and CXCR2, though the latter has a weaker

affinity for IL-8 [ ]. Furthermore, IL-8 guides neutrophils to the direction of inflammation (chemotaxis), which is

evident in increased concentrations of this cytokine in lungs of patients with ARDS [ ]. However, high IL-8 levels

are not correlated with the probability of development of ARDS [ ]. Additionally, IL-8 does not activate NAPDH

oxidase directly with in vitro, yet, it enhances the respiratory burst activity by the recruitment of NAPDH oxidase

components, N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptor, and P-selectin ligands into lipid drafts [ ].

In vitro studies with colon cancer cells transfected with IL-8 cDNA displayed a significant rise in cell proliferation,

migration, and invasion by these cells [ ]. This is supported by earlier in vitro investigations with HUVEC where

recombinant IL-8 induced endothelial cell proliferation and capillary tube organization [ ]. In conclusion, IL-8 is a

very potent trigger to cell migration and proliferation, and thus should always be considered in inflammation

models. A study analyzing systemic IL-8 levels for 60 days after a burn injury in children (n = 468) provided

interesting insights [ ]. The IL-8 levels correlated with the percent of burned total body surface area and were

predictive for multiple organ failure and mortality [ ].

It has to be considered that systemic IL-8 levels do not only provide prognostic value by reading the absolute

levels, but rather implicate the duration of sustained high IL-8 levels for diagnosis. For instance, in a study with 27

patients, those with severe sepsis (n = 17) presented high IL-8 plasma levels steadily for 24 h after admission,

whereas those with uncomplicated sepsis (n = 10) did not [ ]. Furthermore, a smaller study with 24 subjects with

traumatic brain injury (TBI) linked elevated systemic IL-8 levels upon admission to the worsened outcome [ ].
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This was first reported in a similar Croatian study with 20 TBI patients, with elevated IL-8 plasma levels in the non-

survivor group [ ].

Postmenopausal osteoporosis is characterized by rapid bone loss and IL-8 has been implicated among other pro-

inflammatory cytokines to play a role in bone remodeling. There was a significant IL-8 increase in post-menopausal

women with osteoporosis and bone loss [ ]. Atorvastatin, which is known for its pleiotropic effects on bone

tissue, decreased IL-8 levels and bone loss of rats subjected to glucocorticoid-induced osteoporosis [ ]. RANKL-

expressing neutrophils are increased in male patients with Chronic obstructive pulmonary disease (COPD), and

furthermore, associated with bone mineral density and lung function, suggesting that these cells play a role in

osteoclastogenesis in COPD [ ]. Plasma levels of IL-8 were increased in COPD patients and correlated with

RANKL expression by neutrophils [ ].

7. Limitations

This review only provides a short overview of selected cytokines that are important for inflammatory reactions of

the body. However, one should note that hundreds of other cytokines, hormones, and proteins mediate the immune

dysregulation as seen in many patients with inflammatory states like sepsis or after trauma. A more comprehensive

overview about immune dysregulation in shock/sepsis is given by Angus and van der Poll, as well as Rittirsch et al.

[ , ]. Also, large randomized controlled trials or meta-analysis for clinical value of the mentioned cytokines are

still missing. The overall data is still too weak to give a definite clinical evaluation.
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