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Peptide mediated intracellular delivery of FADD protein, efficiently expressed in the cytosol and target core pro-
tumorigenic NFkB signaling to restrict cancer cells proliferation. This approach has the potential to design strategies for
targeted delivery of proteins inside the cells, which might be useful in cancer therapeutics.
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| 1. Introduction

The Fas-associated death domain (FADD) protein orchestrates several cellular pathways, including apoptosis, cell cycle
regulation, autophagy, and inflammation!2, The molecular structure of FADD consists of the N-terminal death effector
domain (DED) and C-terminal death domain (DD). Upon activation of death receptors (DRs), the DD of FADD interacts
with the DD of DRs, and facilitates the DED of FADD to oligomerize with DED containing pro-apoptotic proteins, such as
procaspase-8/10, to form a multimeric death-inducing signaling complex (DISC)EI4. |ndeed, the constituted DISC
assembly concomitantly activates the canonical apoptosis signaling®®. In cancer cells, the DED-containing protein
cFLIPL (cellular FLICE inhibitory protein) competitively exclude caspase-8 binding to FADD at DISC and inhibits apoptosis
signaling!@[8l. Importantly, post-translational modifications (PTMs) and nuclear localization of FADD have been reported in
cancer cells, which further challenge the pro-apoptotic competency of FADD to instigate apoptosis signaling!&ILdIL |n
this context, earlier studies demonstrated that low expression of FADD in cancer cells further exacerbates the severity of
diseasell2L3I4LS] Moreover, somatic mutation in FADDIE! and elevated expression of cFLIPL has been attributed in
the pathogenesis of colon carcinoma. We previously reported that induced expression of FADD regulates cFLIPL
expression and favors procaspase-8 binding to DISC, independent of DR stimulation81920]  Targeting FADD as a
therapeutic candidate would be a promising approach to reinstate apoptosis signaling in cancer cells.

It is well established that the tumor microenvironment is enriched with various pro-tumorigenic stimuli, such as tumor
necrosis factor-a (TNF-a), inflammatory cytokines, and growth factors, which constitutively activates NF-kB signaling and
cell proliferation2H22123] Noteworthy, a constitutive NF-kB activation, leads to aberrant transcriptional priming of anti-
apoptotic genes, such as Bcl-2, TRAF2, cFLIP, clAPs, and RIP1 which further abrogates apoptosis signaling2d24l, On the
other side, pathogen recognition receptor (PRR)-mediated NF-kB activation induces transcriptional priming of
proinflammatory genes to maintain the tumor microenvironment 22281 |n this context, the NLRP3 inflammasome complex
consisting of NLRP3 (nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3), ASC
(Apoptosis-associated speck-like protein containing a CARD), and pro-caspase-1 protein facilitates the proteolytic
processing of NF-kB-induced proinflammatorylL-1B to promote tumor growth2[28129] \we and others previously reported
that transient expression of FADD abrogates NF-kB activation!®8lB9 A recent report revealed that canonical NLRP3
inflammasome activation induces the secretion of soluble FADD protein in human monocytes and macrophages BY;
however, the exact molecular mechanism of FADD, in the regulation of NLRP3 inflammasome signaling is less explored in
the context of apoptosis.

Given the importance of FADD in apoptosis and pro-tumorigenic NF-kB signaling, FADD protein may demonstrate a
tremendous potential to mitigate cancer progression. In this context, few studies investigated the vector-based FADD
gene therapy approach in regulation of tumor growth[2233134]1 and apoptosis in synoviocytes22; however, adenoviral or
vector-based approaches have limited control over protein expression and host-derived factors. Other novel ways to
directly deliver FADD protein in cancer cells are less explored. Recent advancement of direct protein delivery to cells
provides a novel way to enrich poorly expressed proteins to the intracellular compartments2€l37E38] The recent
developments in therapeutic applications of small cell-penetrating peptides (CPPs), such as TAT (trans-acting activator of
transcription) peptides, have been successfully validated to transport macromolecules, such as nucleic acids and proteins,
across the cell membranel321[4Q],



2.TAT-FADD Efficiently Induces Apoptosis Compared with Conventional
Apoptosis Inducers

Given that TAT-FADD has the potential to induce both the caspase-8 and mitochondrial signaling of apoptosis, we next
compared the apoptotic competency of TAT-FADD with conventional inducers of the death receptor and mitochondrial
apoptosis. To this aim, we selected the death receptor ligands CD 95L and TNF-a; pro-apoptotic molecules, such as
etoposide and HA14-1; and the protein translational inhibitor cycloheximide (CHX) (Figure 1A). The HCT 116 cells were
treated with the mentioned molecules and TAT-FADD individually for 3—12 h. We found that within 3 h of treatment, TAT-
FADD showed more disintegrated cellular morphology (shown with arrows) compared to the ligands or/and drugs, and
remained at the maximum post 12 h of treatment (Figure 1B). Next, we measured cell viability and apoptotic death. We
found that TAT-FADD death-inducing and pro-apoptotic activity was comparable with the death ligand CD 95L and pro-
apoptotic molecule HA14-1, and post 12 h of incubation, TAT-FADD demonstrated maximum effect (Figure 1C). We
measured the mitochondrial membrane potential (MMP) and found a significant alteration in MMP of TAT-FADD-treated
cells similar to CD 95L and HA14-1, post 3—-12 h of treatment (Figure 1D). Next, we monitored the activation of PARP and
caspase-7 as a confirmation of apoptotic instigation. Interestingly, at 3 h, we found processing and activation of PARP and
caspases-7 only in TAT-FADD-treated cells as compared to remaining molecules. Moreover, at 6 and 12 h of incubation,
the activation of PAPR and caspases-7 was comparable in all molecules and the same as TAT-FADD (Figure 1E).
Moreover, we found that TAT-FADD synergistically enhances the pro-apoptotic effect when treated in combination with the
death ligands CD95L or TNF-a in HCT116 cells. Together, these results suggest that TAT-FADD rapidly induces apoptosis
signaling and shows a similar pro-apoptotic response as observed with conventional death-inducing ligands and
molecules.
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Figure 1. TAT-FADD'’s pro-apoptotic effect is compared with conventional apoptosis inducers. (A) Schematic diagram
representing the target site of proposed apoptosis inducers. (B—E) HCT 116 cells were treated with CD 95L (200 ng/mL),
TNF-a (50 ng/mL), etoposide (50 puM), HA14-1 (5 pM), protein translational inhibitor cycloheximide (CHX, 5 pg/mL), and
TAT-FADD (5 pM) alone for the mentioned time points, (B) The bright field images of cells counterstained with DAPI, post
treatments, representative of 150 cells from 3 independent fields, scale bar 5 pm, (C) % apoptotic death by a Tali™
image-based cytometer, (D) % change in MMP and (E) expression of Procaspase-7 and cleavage of PARP by Western
blot analysis, molecular weight marker left to each blot. In (C,D), significance compared between non-treated (0 h, white
bars) and treated cells (black bars). h, hours; clv, cleaved; CD95-R, CD95 receptor; TNF-R, TNF receptor; MMP,
mitochondrial membrane potential. Mean + SD; *p < 0.05, **p < 0.01, and ***p < 0.001.
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