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Ventilation systems rely on a passive molecular diffusion process, on pressurized gas flow, or Venturi-induced

convection. 

metabolic gases  greenhouse gases  aerenchyma

1. Introduction

The aquatic environment holds special challenges for plant survival. The diffusion of gases in water is about 10 -

fold slower than in air, so that aquatic plants must perform photosynthesis in water, and maintain aerobic

respiration in flooded conditions . Herbaceous wetland plants differ significantly, according to the accessibility of

gases for their metabolism regarding their position in the water column. Researchers define various functional

groups, namely, (1) emergent macrophytes or helophytes that are rooted in water-saturated soil, with foliage

extending into the air (e.g., Typha latifolia, Phragmites australis); (2) floating-leaved macrophytes that are living in

water rooted in hypoxic or anoxic sediment, with leaves floating on the water surface (e.g., Nuphar

luteum, Nymphaea alba); (3) submerged macrophytes that grow completely submerged under the water, with roots

or rhizoids attached to the substrate (e.g., Myriophyllum spicatum, Potamogeton crispus); and (4) free-floating

macrophytes that float on or under the water surface, and are usually not rooted in the sediment

(e.g., Ceratophyllum demersum) . In addition, wetlands also host many different woody plants that are

permanently or occasionally rooted in water-saturated sediment . These species, belonging to different groups,

often possess adaptations to overcome oxygen and carbon dioxide deficiencies, in order to maintain optimal

conditions for photosynthesis and respiration. Emergent and floating-leaved species have an advantage over

submerged species because their above-ground parts are fully or partly exposed to air. Aerial leaves have stomata

in their epidermis, which can be adjusted to optimize exposure of internal tissues to the atmosphere and the

exchange of gases. Thus, aerial plant parts are well supplied with oxygen, but for roots and rhizomes anchored in

water-saturated soils, oxygen for respiration can be limited. Therefore, efficient ventilation systems are crucial for

their survival. Ventilation systems rely on a passive molecular diffusion process, on pressurized gas flow, or

Venturi-induced convection ; however, in submerged plant tissue, the direct exchange of gases between these

tissues and water also occurs . In most aquatic species, ventilation is enabled by an extended system of air

canals and intercellular spaces called aerenchyma, which develop in different plant organs from roots, to stems

and leaves. . Gases in aerenchyma can originate from the atmosphere, rhizosphere, or plant metabolism .

Laing  shows a strong relationship between the leaf area and the extent of changes of oxygen and carbon

dioxide concentrations in aerenchyma during periods of illumination; thus, the contribution of metabolic gases may

vary significantly among species.
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Aquatic plants mainly form aerenchyma constitutively in different organs, namely, roots, leaves, and stems, while

some amphibious and terrestrial plants produce aerenchyma in response to an oxygen shortage . The presence

of aerenchyma may differ among species. Independent of habitat, aerenchyma patterns are stable at the genus

level, and the consistency of pattern is stronger in the roots than in the shoots . In addition to the atmosphere,

gases in aerenchyma can originate from the rhizosphere or plant metabolism . The formation of aerenchyma may

not depend on environmental conditions, or be induced by flooding . Aerenchyma cells are formed lysigenously

by programmed cell death, as is the case of rice roots; schizogenously by the expansion of intercellular spaces ;

and expansigenously (secondary aerenchyma) by cell division or enlargement, without cell separation or death .

These enlarged spaces may develop either in primary tissues (primary aerenchyma), or in secondary tissues

(secondary aerenchyma) . According to Doležal et al. , lysigenous aerenchyma are mostly produced by

submerged plants, schizogenous aerenchyma by terrestrial and perennial wetland plants, and expansigenous

honeycomb aerenchyma by aquatic floating-leaved plants. The amount of intercellular spaces varies significantly

among species. In aquatic species, these intercellular spaces contribute up to 60% of the leaf volume , while in

mesophytes, their volumes range from 2–7% . Thus, in non-tolerant species, flooding may result in the demise

of the plant.

Beyond ventilation, aerenchyma cells have other important ecological functions, including acting to store gases and

increasing their internal conductance to roots and shoots . The transfer of oxygen to underground organs, via

aerenchyma during soil flooding, may prevent the suffocation of plants. Oxygen can also be transferred from roots

to the rhizosphere, via aerenchyma. This critically important oxygen to oxidize and detoxify toxic chemicals formed

in sediments in environments with low redox potential , noting that a lack of oxygen is associated with

reduced forms of sulfur, manganese, and iron that may reach toxic levels in the soil .

In wetland soils, gas concentrations of several gases, such as carbon dioxide and methane, exceed atmospheric

concentrations. Thus, aerenchyma can also be a path for greenhouse gas emissions from the plant, as methane

and nitrous dioxide are released via plants from waterlogged sediments to the atmosphere .

Some photosynthetic O  produced by submerged plants oxygenates the water column, while natant plants can

prevent oxygen diffusion from the atmosphere to water . Aerenchyma cells lend buoyancy and

mechanical resistance to breakage, with a relatively small investment in biomass by aquatic plants .

The ventilation in wetland plants takes place via various plant structures, and is enabled by the presence of

aerenchyma in these structures. The source of gases and influx and efflux locations may differ significantly among

different species and plant groups.

2. Diversity of Ventilation Systems

Similar physical processes of ventilation occur in different taxonomical and functional plant groups that thrive in

oxygen-deficient sediment; however, their morphological adaptations differ significantly (Table 1). Functional traits

of these plants are not only the species’ response to specific environmental conditions, but they also depend on
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their phylogeny. Jung et al.  find specific trends of aerenchyma patterns in several taxa of higher plants, and

show that these patterns partially coincide with their phylogeny. The study of Cape reeds reveals that the presence

of aerenchyma correlates with the eco-hydrological niche at the population and species level, indicating that

waterlogging presents an environmental filter that excludes species without aerenchyma . Bedoya and Madrinán

, studying the evolution of the aquatic habit in genus Ludwigia L., find a convergence towards the absence of

secondary growth in roots, smaller proportion of lignified tissue area in underground organs, and the presence of

primary aerenchyma. However, there are also studies that are not consistent with these results. For example, the

study of different Carex L. species in a phylogenetic context, with an even sampling across the different clades,

shows that the size of the aerenchyma has only a weak relation to soil moisture . Carex species with poorly

developed aerenchyma have low performance in flooded soil, while partial submergence may even affect species

with a larger amount of root aerenchyma .

Table 1. Ventilation mechanisms in different taxonomical and functional plant groups that thrive in oxygen-deficient

sediment.
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Plant Group Taxonomic Group Source of
Gasses

Ventilation
Principle Special FeaturesReference

Submerged Isoetids
Water,

metabolism,
Sediment

Diffusion,
aeration of
rhizosphere
via buried

leaves

Aerenchyma,
CAM

 Angiosperms
Water,

metabolism,
Sediment

Diffusion
Metabolic gasses

trapped in
aerenchyma

Floating Nuphar spp., Nymphaea spp.
Air,

metabolism,
Sediment

Pressurized
ventilation,

thermo-
osmotic gas

transport,

‘Heat pump’
drives gasses

from the
atmosphere via
young natant

leaves, petioles
to roots and

back, via older
leaves to the
atmosphere

e.g., 

 Nelumbo nucifera Air,
metabolism,

Sediment

Pressurized
ventilation,
influx via
laminal

stomata of
natant leaves

through
aerenchyma
to rhizomes;
back from

Leaf lamina with
fewer and

smaller stomata,
leaf central part
with larger and

denser stomata,
which actively
regulate the
airflow by
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Plant Group Taxonomic Group Source of
Gasses

Ventilation
Principle Special FeaturesReference

rhizomes
through

aerenchyma
in petiole
through

stomata in
leaf central

part

opening and
closing

Helophytes
Equisetum spp.—4 out of 9

have through-flow
convection

Air, possibly
also

metabolism,
sediment

Pressurized
ventilation,
humidity-
induced
diffusion,

Air moves
through stomata

through
branches, via

interconnecting
aerenchyma

channels in stem
and rhizomes,
with venting
through the

previous year’s
stubble or

damaged shoot.

 Phragmites spp.

Air, possibly
also

metabolism,
sediment

Pressurized
ventilation,
suction via
old broken

stems
(Venturi-
effect),

air films on
leaves when
submerged

Via leaves,
stems to root

system, partly to
sediment (ROL),

and back to
stems, leaves,

and atmosphere

 Typha spp.

Air, sediment,
possibly

metabolism,
oxygen in the
rhizosphere

may be
obtained from

the
decomposition

of hydrogen
peroxide by

catalase

Pressurized
ventilation,

leaf stomata
create inner

pressure,
air films on

leaves when
submerged

Air enters
through middle-

aged leaves, and
exits through the

oldest ones

 Oryza sativa Air films on
leaves when
submerged

Flow from
above-

ground parts

Water-repellent
leaf surface; air
layer up to 25
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Plant Group Taxonomic Group Source of
Gasses

Ventilation
Principle Special FeaturesReference

via roots by
diffusion, and
possibly also
by mass flow

µm, large air
spaces inside

leaves and roots,
the porosity of
adventitious

roots, a barrier in
roots to prevent
radial O  loss

from roots

Species of
mangrove

forest
Acrostichum spp.   

All plant parts
have large air

spaces

 Nypa fruticans  

Bases of
abscised
leaves

function as
air inlets, by
developing a
network of
lenticels

covering the
leaf base

connected to
aerenchyma

“snorkeling palm”
leaf bases

function up to 4
years after leaf

abscission

 Mangroves  

High oxygen
pressure in
the roots is
maintained

via ventilation
through the
lenticels on

different root
structures
connected

with
aerenchyma

Special
structures, i.e.,

pneumatophores,
knee roots, stilt
roots, or plant
roots, provide

ventilation during
low tides

Other
wetland
species

Alnus spp.

Thermo-
osmotically
driven gas

flow

In Alnus
glutinosa, the
flow is from
the external
atmosphere
through the
stems to the

roots

Thermo-osmotic
flow in alder is
related to the
lenticels in the

bark of the stem,
stem

photosynthesis
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Most species use aerenchyma as a ventilation path, and as a reservoir for gases originating from the atmosphere,

soil, and metabolic processes (e.g., respiration, photorespiration, and photosynthesis). The differences among

groups are related either to specific environmental conditions (e.g., emergence, submergence), to specific species

anatomy, as is the case for the lotus, or to metabolic processes and properties related to their growth form (e.g.,

emergent, submerged, floating-leaved, rosette, woody plants).
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 Taxodium distichum  

“knees”
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from the
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increases the
porosity of

roots, stems,
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enhanced

O  diffusion
to roots.
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