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Plasma is a quasi-neutral system in a gaseous or fluid-like form that can be artificially generated in an electromagnetic

field and a flow of neutral gases such as helium, argon, nitrogen, oxygen, or atmospheric air. It contains a mixture of

radicals, H2O2, O3, ultraviolet radiation, charged particles, exited metastable atoms, and electric fields. Non-thermal

atmospheric plasma has recently attracted great research interest as an alternative for operative solutions to problems

related to safety and quality control. It is a powerful tool for the inactivation of different hazardous microorganisms and

viruses, and the effective decontamination of surfaces and liquids has been demonstrated. Additionally, the plasma’s

active components are strong oxidizers and their synergetic effect can lead to the degradation of toxic chemical

compounds such as phenols and azo-dyes. 
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1. Introduction

Our contemporary society is facing many environmental challenges due to the unprecedented level of industrialization,

urbanization, and exponential growth of the human population. The increasing generation and disposal of wastes,

environmental pollution, source depletion, biodiversity loss, climate changes, and growing energy demand are global

threats to our sustainable development and require a fundamentally new rethinking to reduce the consumer footprint on

nature . The transformation of our linear “take-make-waste” system to the cyclic flow of materials and energy is

urgent, and this is a key driver for the rapid development and promotion of the circular economy concept. The circular

economy has the potential to overcome challenges by following three general principles: “(1) preserve and enhance

natural capital by controlling finite stocks and balancing renewable resource flows; (2) optimize resource yields by

circulating products, components, and materials in use at the highest utility; (3) foster system effectiveness by revealing

and designing out negative externalities“ . The most widely applicable aspects of the circular economy include eco-

design for sustainability, an extension of the product life cycle, and implementation of “reduce, reuse and recycle” option in

waste management . However, the closing of loops in different industrial sectors by circulation, reuse, and recycling of

materials and products brings to the fore other key issues—those related to safety and the prevention of risks from

secondary contamination. Ensuring a high level of uncompromising safety in circular economy practices is a priority task

and an important keystone for the achievement of high social acceptance and positive user perceptions and attitudes.

When discussing safety issues, it must be taken into account that safety includes both microbiological and chemical

aspects. The context of the circular economy is no exception-we must be sure that the use of waste streams from one

industry/sector as a material input for another is completely safe and the possibility for the crossover of chemical or

microbiological hazards is eliminated/minimized. The problem is escalating nowadays with the enormous production and

use of chemicals, resulting in a global scale of chemical pollution, and the pandemic distribution of unknown viruses and

multidrug-resistant bacteria . It is clear that we urgently need new advanced approaches ensuring both

microbiological safety and the removal of potential chemical residues in different materials and products, with the quick

achievement of the high safety level, easy operation, lack of residual toxicity, and wide use with no application restrictions

. Facing these scientific and practical challenges, it seems that one well-known physical phenomenon—plasma—

and some recently developed plasma-based technologies can effectively respond to these requirements.

Plasma is a quasi-neutral system in a gaseous or fluid-like form that can be artificially generated in an electromagnetic

field and a flow of neutral gases such as helium, argon, nitrogen, oxygen, or atmospheric air. It contains a mixture of

radicals, H O , O , ultraviolet radiation, charged particles, exited metastable atoms, and electric fields . The plasma

active components individually are well-known sterilization agents, and as expected, their combination in plasma has a

strong synergistic effect and provides high bactericidal efficiency with low costs, timesaving, and non-toxicity.
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Based on the temperature of particles, there are two types of plasmas: high-temperature plasmas (fusion plasmas) and

low-temperature plasmas (non-thermal or cold plasmas) . Each type of plasma has a specific application and benefits

but in the field of biosafety and microbiological control of different materials and products, the leading role of non-thermal

plasma is undoubted, especially the type generated at atmospheric pressure . Its

main advantage is a simple and less expensive plasma source operating in an open space without thermal damage to

treated materials. Non-thermal plasmas may be generated by direct current (DC) discharge, radio frequency discharge,

dielectric barrier discharge, pulsed power, and surface wave (microwave) discharge. Microwave plasma is not in

equilibrium, the electron energy distribution function is non-Maxwellian, and the temperature of the heavy particles is

much lower than the electron temperature . Non-equilibrium, non-thermal atmospheric pressure plasma (also called

cold atmospheric plasma—CAP) is suitable to treat living tissues, heat-sensitive materials, foods, and bio-compatible

materials, and has wide use in medicine, the agro-food industry, and microbiological control. The use of CAP is not limited

to alternative sterilization or therapeutic technique for biomedical application—the plasma-based approach has an

important role in the solution of some critical environmental issues. Recent data show its significant potential as an

effective tool in pollution control and the treatment of different polluted sources. Looking at the wide field of plasma

applications from a different perspective, it is clear that this huge potential can successfully contribute to improving the

microbiological and chemical safety of products and materials in the circular economy.

2. Low-Temperature Non-Equilibrium Plasma for Microbial
Decontamination

For convenience, the specific fields of CAP where its germicidal effect is used can be generalized as follows: (1) plasma-

aided medical therapies, (2) plasma-assisted dentistry, and (3) plasma-based decontamination and sterilization for

microbiological control in agriculture, food industry, microbiology, water treatment, etc.

The interaction of CAP with living objects, bacteria, spores, and viruses has been extensively studied in the last decades,

and basic principles have been defined . The main attention has been paid to plasma’s killing effect on bacteria

(both Gram-positive and Gram-negative), bacterial spores, biofilms, and fungi. A significant efficiency of treatment has

been gained with different CAP-generated configurations against a large number of pathogens with high-risk profiles:

Escherichia coli, Listeria monocytogenes, Salmonella enterica, Staphylococcus sp., Pseudomonas
aeruginosa, Bacillus sp.; and spores such as Candida albicans . The bactericidal effect of CAP is

clearly expressed in the treatment of biofilms on different surfaces and bacterial suspensions in liquids. Viruses and prions

have been studied to a lesser extent, but in the last two years, this gap has begun to fill intensively due to the COVID-19

crisis . Many studies have demonstrated the ability of non-thermal plasma to be an effective virucidal agent. The

plasma treatment reduces virus burdens on contaminated surfaces and airborne viruses. and can be applied for

successful prevention and interference of virus replication .

Some of the hypotheses for the inactivation mechanism of CAP on bacteria are summarized by Fernandez and Thompson

as follows : the destroying effect of UV irradiation on DNA according to its power density and wavelength range ;

damage from the diffusion of reactive species through membranes and their reaction with cell macromolecules ; the

etching effect on the cell surface by direct bombardment with free radicals ; erosion of the microorganisms through

intrinsic photodesorption by UV . The last two lead to a massive leakage of cell content, a strongly negative effect on

cell adhesion at biofilm growth, and the interruption or inhibition of biofilm quorum sensing systems .

In the field of agriculture and food processing, the search for new promising and effective “cleaning” tools with a

multipurpose application based on cold atmospheric plasma has also been the subject of many types of research 

. The growing need for “green”, un- or less processed food with high quality, safety, and preserved taste and

nutrients leads to a very attractive rating of CAP as a powerful non-thermal sterilization technique. The recent studies are

aimed at the treatment of food products, food processing devices, packaging materials, functionality modification of food

materials, and removal of agrochemical residues . Non-thermal atmospheric plasma is a promising

decontamination technology for the inactivation of bacteria, yeasts, molds, and fungal and bacterial spores both on the

foods and on the abiotic surfaces of packages or processing equipment . The obtained results reveal promising

opportunities to use CAP to ensure safety, especially in the case of the entry of waste streams in different stages of

processing. The reuse of composted food wastes or activated sludge as fertilizer in agriculture, for example, may increase

microbiological risk, while appropriate plasma treatment of the final product may eliminate the hazard. Additionally, plasma

can be used for alternative food processing to obtain the desired color of meat products without adding chemicals, to

improve the extraction of essential oils, or to extend the life of some products .
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3. Low-Temperature, Non-Equilibrium Plasma for Removal of Hazardous
Chemicals

The growing production, wide use, and subsequent discharge of different toxic and persistent pollutants in the

environment are another serious threat to human and ecosystem health. The effective solution of associated

environmental problems needs adequate pollution control based on innovative approaches, and plasma technologies are

one of the promising new alternatives. Considerable attention of researchers has been focused on plasma-assisted

removal of volatile organic compounds from polluted air, and significant results have already been achieved in this area

. In the last years, these technologies have been applied for the treatment of gases from animal production to

food processing facilities, and a high removal and energy efficiency has been achieved . Solid waste and soil treatment

is another area of research interest where the focus is mainly on thermal plasma application, but some types of non-

thermal plasmas have been used . The efforts in the environmental field of plasma application are related to another

target component—water—and its treatment for the removal of organic pollutants. The strong oxidation features of some

highly energetic plasma components mean that plasma can be used successfully for the removal of unacceptable organic

compounds in wastewater . In many advanced strategies for pollution control and management, plasma

technologies are considered as one of the options for the substitution of expensive traditional chemical methods in water

treatment and the elimination of secondary pollution in treated water. High efficiency has already been achieved in the

removal of phenol and a wide range of phenolic derivates , azo-dyes , pharmaceutical and antibiotic

compounds , and carbon from plastic waste . Several configurations have been developed and applied for the

removal of different organic pollutants during discharge in the gas, liquid, or hybrid liquid-gas phase, such as pulsed high-

voltage electrical discharge, glow discharge, and gliding arc .
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