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Electrostatic assembly is one of the bottom—up approaches used for multiscale composite fabrication. Since its
discovery, this method has been actively used in molecular bioscience as well as materials design and fabrication
for various applications. Despite the recent advances and controlled assembly reported using electrostatic
interaction, the method still possesses vast potentials for various materials design and fabrication. This review
article is a timely revisit of the electrostatic assembly method with a brief introduction of the method followed by
surveys of recent advances and applications of the composites fabricated. Emphasis is also given to the significant
potential of this method for advanced materials and composite fabrication in line with sustainable development
goals. Prospective outlook and future developments for micro-/nanocomposite materials fabrication for emerging

applications such as energy-related fields and additive manufacturing are also mentioned.
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| 1. Introduction

Nanomaterials exhibit unique properties that are not seen in bulk materials, and this has led to an increase in the
development of nanocomposites for various applications. In composite materials design and fabrication, the
approach used is either a top—down or bottom—up approach L2, However, the bottom—up approach offers better
flexibility in terms of dimension control, shape ability, and surface-charge modification to achieve desired properties
and functionalities (2. An example of a bottom—up approach in materials design is the electrostatic assembly (EA)
method. Caruso first reported the formation of multilayer silica nanoparticles on polystyrene latex using the EA
method in 1998 [l Since then, the EA method has been widely used for the design and fabrication of materials
such as bio-components Bl polymers B inorganic materials 19, and carbon-based materials such as

graphene and fullerene 11112,

In this review, a brief overview of an electrostatic assembly is first described, followed by a comprehensive survey
of the current progress in composite materials design via the EA method as well as its prospective outlook for

future development. Emphasis on emerging applications using EA assembly is given in this review.

1.1. The EA Method
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In earlier days, the EA method involved the use of the Langmuir-Boldgett (LB) technique where monolayers
generated on water were transported onto a solid supporting structure. With the limitations in equipment, substrate
size, as well as film quality of the LB technique, the self-assembly of films using covalent and coordination
chemistry was developed. However, this technique was only applicable for certain classes of organic materials with
limited design flexibility, and a high-quality multilayered structure cannot be achieved. To achieve a good nano-
architectured film yield regardless of the substrate topology and nature, a suitable alternative is to employ the
electrostatic attraction of molecules with opposite charges as a driving motion for the multilayer and
nanoarchitecture build up 221, Decher et al. first reported the formation of one or multiple layered composite films
(coatings) via a layer-by-layer (LbL) adsorption of polyelectrolytes in aqueous solution. The basic principle of this
technique involves the repulsion of equally charged molecules (induced using polyelectrolytes) as well as the
attraction and adsorption of oppositely charged molecules to the initial molecule leading to form well controlled

multilayer structured films after several cycles 14,

Subsequently, many studies have been reported using the EA method and LbL assembly for various applications.
The reason for this boom is the feasibility of using the EA method for controlled decoration of desired additives at
the nano and micro levels irrespective of the object's shape and dimensions, which is not achievable using
conventional mixing methods . The attractive features of this approach include the controllability of additive
coverage percentage on a primary particle and controllability of multiple-component layered films formation with
good precision 2!, Studies focusing on biomaterials and biomedicine for drug delivery and cell cultivation have
been reported L8718l As the awareness for achieving the sustainability development goals (SDGs) began to
grow in our daily lives, the development of materials for sustainable-related technologies such as renewable
energies (fuel cells, solar cells), water treatment, efficient energy storage systems (batteries and capacitors), and
additive manufacturing have been deemed as emerging technologies and taken the center stage in research and
development. Low environmental load processes have been recognized as a way of achieving SDGs through
efficient energy usage and the effective utilization of natural resources without leaving heavy footprints on the
environment. Given that the EA method is a green process approach, it is expected to play an important role in

materials design to achieve the SDGs.

2. Composite Fabrication via EA Method and their
Applications

2.1. Formation of Electromechanical or Electrochromic Responsive LbL Composite
Films

Using the EA method in the formation of LbL films, the controlled deposition of films can be achieved. By utilizing
the LbL assembled films as a building block, further optimization and coupling via electrochemical methods can be
used to fabricate functional nano-devices such as sensors, microelectromechanical systems (MEMS), and
electrochromic materials. The strategy is to incorporate electro-responsive materials within the LbL films in the
generation of stimuli responsive polymer composite films. For example, in the development of MEMS systems, a

transducer that converts electrical energy to mechanical energy is one of the core components. In the development
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of low-cost MEMS, many researchers are focusing on the development of electroactive polymers because they are
inexpensive, possess a wide range of environmental endurance, and have good compatibility with many fabrication
techniques. To incorporate redox active materials in the fabrication of electro-responsive materials, electro-
swelling/deswelling of LbL films is commonly used. Hence, the assembled LbL films will experience
swelling/deswelling during ion exchange due to the redox of the incorporated active materials. The electroactive
materials confined or embedded within the electrostatic deposited film exhibited improved electro-responsive
properties. One example of the above-mentioned phenomenon is shown in Figure 1, where the redox of
ferrocyanide ions within the electrostatic assembled films of polyglutamic acid and poly (allylamine hydrochloride)
resulted in the electro-swelling of the LbL assembled films. During charge compensation, the diffusion of counter-
anions with water molecules occurs causing the swelling and deswelling process, which can be controlled by

changing the salts dissolved in the solution.

Deswelling State
a) b)

Redox active moiety » >

[Fe'(CN)gl4-
[FE'“[CN]s]"”'G 3

Swelling State

Figure 1. Electro-swelling processes of LbL films. Electro-swelling/deswelling of LbL films based on (a) redox
active moieties grafted onto one of the polyelectrolytes, (b) free redox active molecules confined in LbL films, and

(c) redox active component-based film. Reprinted with permission from 13, copyright (2015) Elsevier.

In a recent study on the fabrication of a flexible electrochromic display, Qi et al. demonstrated the formation of 2D
composite materials consisting of V,05 nanosheets and graphene films using the electrostatic LbL method, as
shown in Figure 2a. The composites exhibited an impressive ultrafast response time in coloring and bleaching
because of the reduced agglomeration, improved electronic conductivity, and reduced charge transport distance,

as shown in Figure 2b 22, When the endurance of the device was tested by bending at an angle of 90° for 100
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cycles, rapid electrochromic response time was still observed. This shows that the EA method possesses excellent

potential for the future development of flexible devices.
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Figure 2. (a) Schematic illustration of the LbL assembly process of flexible V,05 NSs/IGO@ITO/PET films. (b)
Schematic illustration of the coloring and bleaching processes of V,05 NSs/GO films. Reprinted with permission
from 22 copyright (2020) Elsevier.

2.2. Composite LbL Films for Biomedicine and Biomimetic Extracellular Matrix
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In the early stage of LbL development, most studies focused on the use of synthetic polyelectrolytes. However,
when considering the application of EA and LbL techniques for biomedical and biomaterials applications,
researchers began to focus on the use of natural polyelectrolytes such as chitosan, dextran, amine hyaluronic acid,
heparin, etc. . The use of natural polyelectrolytes in LbL assembly provides a new potential for the development of
advance structural composites with precise design such as core—shells for drug delivery. Furthermore, the flexibility
of post-treatment after LbL assembly is an added advantage, especially for altering the physicochemical properties
of the assembled composite films. Parameters such as temperature, light irradiation, electric field induction, pH

adjustment, and vibrational stimulation can be used to adjust the properties.

For the functionalization of biomaterials, it is important to create a microenvironment that mimics the extracellular
matrix . By designing polymeric LbL films, current progress has enabled the development from only mimicking cell
configuration to the possible control of cell behaviors . The possibilities of biochemical engineering via the EA
method is vital for the advancement in biomaterials and tissue engineering fields . Due to the good stability of
electrostatically assembled films in aqueous solution and its dynamic potential, the microenvironment generated,
which is almost equivalent to the natural cellular matrix, is crucial due to the cells’ selective recognition to certain
biochemical and biophysical conditions. Liu et al. have demonstrated protein immobilization through matrix binding
via the LbL technique. As shown in the schematic in Figure 3, the immobilization of a chemoattractant known for
hematopoietic stem cell homing and cancer progression called stromal cell-derived factor-1 (SDF-1a) was
achieved using poly(I-lysine) (PLL) and hyaluronan (HA) polyelectrolytes using the LbL process. This resulted in a
significant increase in human epithelial breast cancer cell spreading in the matrix-bound SDF-1a. From their
investigation, they found that the cell adhesion on films with matrix-bound SDF-1a exhibited an obvious spatial
organization with good focal adhesion compared to the cells presented with a soluble cue [2%. Their study showed
that LbL films were effective as a biomimetic tumoral niche in revealing potent cellular effects as well as underlying
mechanisms that can be useful for the research in regenerative therapies against cancer cells such as breast

cancer.
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Figure 3. (A) Successive steps for the preparation of matrix-bound stromal cell-derived factor-1 (SDF-1a) using

layer-by-layer films as extra-cellular matrix with poly(l-lysine) (PLL) and hyaluronan (HA) as polyelectrolytes. The
film is first deposited step-by-step (1), then cross-linked (2) and finally loaded with SDF-1a in acidic conditions (1
mM HCI) (3), followed by a rinsing step in order to obtain matrix-bound SDF-1a (4). (B) SDF-1a can be presented
as a soluble cue (sSDF) or in a matrix-bound manner (bSDF). Reprinted with permission from 2%, copyright (2017)

Elsevier.

2.3. Composite Materials for Energy Storage and Conversion Technologies
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Recent development in the Internet of Things and electric vehicles has resulted in a demand surge for composite
materials with high storage and energy capacity. Electrochemical energy storage systems such as lithium-ion
batteries, lithium-sulfur, and metal—air batteries have attracted attention due to their high specific energy capacity
(21[22] |n a recent study carried out on all-solid-state lithium—sulfur batteries, Phuc et al. reported the use of the EA
method in the design of their solid electrolyte consisting of 0.67 Li;PS,—0.33 Lil (LPSI) and sulfur—carbon nanofiber
(S-CNF) using a novel liquid phase route [22. The schematic for the preparation of the S-CNF via the EA method is
shown in Figure 4a—c, while Figure 4d shows the SEM image and energy-dispersive X-ray (EDX) mapping of the
S-CNF-LPSI composite. The proper distribution of S-CNF within the LPSI promoted an electrically conductive
pathway to overcome the Li,S, electronic insulation behavior, enabling a good lithium—sulfur battery performance.
In the development of Fe—air batteries, Tan et al. reported a facile and simple way to decorate iron oxide particles
(Fe30,4) at room temperature on carbon paper in a short period of 10 min using the EA method. The Fe30y-
decorated carbon paper was used in the evaluation of alkaline aqueous and all-solid-state Fe-air batteries with a

maximum discharge capacity of 460 and 70 mAh g1, respectively (241,
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Figure 4. Schematics of sulfur—carbon nanofiber (S-CNF) composite preparation: (a) adjustment of the CNF

surface charge, (b) formation of Na,S3 solution, (¢) S-CNF composite formation. The SEM image and and energy-
dispersive X-ray (EDX) mapping results for S, C, P, and | of the S-CNF-LPSI (Li3;PS,—0.33 Lil) composite are
shown in (d). Reprinted with permission from 23], copyright (2020) ACS.

As 2D graphene-derived materials are becoming an integral part of the materials used in the development of
advanced functional composites, they have been incorporated in various composites for a wide range of
applications . The application of the EA method for the integration of graphene materials into composites has been
reported in the literature. For supercapacitor applications, Fenoy et al. reported on the fabrication of electrode
materials using electrostatic assembled polyaniline-PSS complex layer with iron oxide nanoparticles decorated
graphene layers in aqueous solution 2. They demonstrated an excellent electrochemical capacitance of 768.6
and 659.2 F g1 in 0.1M HCl and 0.1M KCI (at 1A g™1), respectively with high cycling stability up to 1600 cycles. In
another interesting development, a possible diffusion-driven mechanism of LbL assembled layers was reported by
Hong et al. They demonstrated the formation of a porous reduced graphene oxide (rGO)/polyaniline (PANI)
composite as the binder-less electrode for supercapacitors 23, The strong electrostatic interaction between

graphene oxide (GO) and the branched polyethyleneimine after the diffusion process enabled the formation of a
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porous foam-like structure as a template for the polymerization of PANI, as shown in Figure 5. This simple

fabrication of a binder-less electrode yielded a capacitance performance of 438.8 Fgtat0.5A g™t in 1 M H,SO,.
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Figure 5. Schematics of preparing reduced graphene oxide (rGO)/PANI (polyaniline) composite film. Branched
polyethyleneimine (bPEI) solution was coated on a filter paper. The coated paper was immersed in assembly
graphene oxide (GO) suspension. GO and bPEI formed a stable complex layer at first. Then, bPEI diffused out of
the reservoir and complexed with GO sheets. This complexation and diffusion process continued, eventually
developing into a thicker GO/bPEI composite film. Some square GO/bPEI films (2 x 2 cm?) were cut and detached
from the substrate, then subjected to a hydrothermal treatment at 190 °C. Finally, the hydrothermally reduced-GO
films were used as a template for the polymerization of aniline. The rGO/PANI exhibits capacitance of 438.8 F g2
at0.5Ag1in 1 M H,SO,. Reprinted with permission from 22, copyright (2017) Elsevier.

For fuel cell applications, proton exchange membrane fuel cell (PEMFC), which possesses a high energy
conversion efficiency and low-cost fabrication, is an alternative source for a clean energy [28l. Currently,
researchers are working on the development of PEMFC due to its higher reaction kinetics and easier heat
management. Current challenges include obtaining a polyelectrolyte membrane (PEM) that exhibits good proton
conduction at elevated temperature and low humidity 2. In order to obtain a higher phosphoric acid uptake to
promote higher proton conductivity, the formation of organic—inorganic hybrid membranes to improve the physico-
and electrochemical properties of the PEM were reported 281291301 ysing the EA assembly, controlled multilayer
LbL membrane formation enabled the fabrication of PEM with desired properties such as improved proton
conductivity and mechanical property B, Che et al. reported the formation of multilayer-component PEM using
sulfonated polyetheretherketone (SPEEK) as a polyanion while polyurethane (PU) and the ionic liquid of 1-butyl-3-
methylimidazolium were used as a polycation, as shown in Figure 6. The films obtained as shown in Figure 6 had a
thickness of approximately 25 pum after 100 layers of coating, and the films exhibited satisfactory mechanical

strength and excellent conductivities with different phosphoric acid doping levels 27,
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Figure 6. Multi-component membrane of SPEEK—-PU-SPEEk-bmim obtained via the LbL method, which
demonstrated a maximum proton conductivity of 1.03 x 10~} S/cm. Schematic of the interaction force between
SPEEK and PU, SPEEK and bmim* in one layer of the LbL membrane. Reprinted with permission from [45],
copyright (2019) Elsevier. PU: polyurethane, SPEEK: sulfonated polyetheretherketone, bmim: 1-butyl-3-

methylimidazolium.

2.4. Composite Materials for Additive Manufacturing

Additive manufacturing (AM) technology is regarded as the next-generation manufacturing revolution that would
enable the rapid and moldless formation of complicated components 3233134135136 The potential of AM is massive
for the production of functional composites from a wide range of materials such as metals, polymers, and ceramics.
AM enables the rapid prototyping and transformation of product manufacturing with precise customization. The
synchronization of computer—aided design with AM has enabled the formation of complex 3D structures within a
short time with maximum material utilization while enabling flexible customization and design. According to Tofail et
al., AM is close to being a “bottom—up” manufacturing process, where the desired structure is fabricated using a
“layer-by-layer” approach, resulting in unprecedented freedom in the manufacturing processes 4. In AM 3D
printing technology, the ability to sinter the materials via indirect and direct laser sintering of the printed artifact is
one important factor for rapid prototyping. Although breakthroughs have been reported for metal and polymeric
materials, laser sintering of ceramics remains a challenge due to their high melting point, poor thermal shock

resistance, poor ductility, and limited laser absorptivity BZE8] |n the work reported by Kuwana et al., cellulose
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nanofiber (CNF) decorated alumina (Al,O3) powders obtained via EA were used as a composite for the selective
laser sintering of Al,O3. The EA method enabled the homogeneous adsorption of CNF onto Al,O3 particles, which
were converted to carbon residue after the heat treatment to allow improved laser absorption for the sintering
process. The feasibility of using naturally abundant CNF in materials design also promotes sustainability for AM. In
another recent work, Yavari et al. studied additive manufactured bio-functionalized meta-biomaterial composites
with infection prevention and bone tissue regenerative properties 9. The LbL coating was carried out using
gelatin- and chitosan-based coatings containing either bone morphogenetic protein (BMP)-2 or vancomycin on the
surface of selective laser melted porous structures made from commercial pure titanium, as shown in Figure 7.
This study unequivocally demonstrates that multifunctional additive manufactured composite materials can be

fabricated using the EA method.
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Figure 7. Computer-aided design drawings of the porous structured titanium used as input for the AM process (a).
Schematic illustration of the layer-by-layer coating process (b,c) and the resulting surface layers (d). Reprinted with

permission from B2, copyright (2020) Elsevier.

2.5. Ceramic Composites

2.5.1. Mechanical Properties Control of Carbon-Based Al,03 Composites
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Carbon-based Al,O3; composites have attracted attention due to their exceptional mechanical properties such as
failure strength, toughness, and wear resistance 49, In addition, other properties such as the electrical and thermal
properties of these composites can also be altered 2142431 By ysing the EA method to control the decoration of
carbon additives on Al,O3, the mechanical properties of carbon—ceramic composites can be achieved. In a recent
study that used microparticles of Al,O3 granules with adsorbed carbon nanoparticles (CNP) on their surface, Tan et
al. demonstrated that by controlling the amount of CNP additives and Al,O5; microparticle size, different surface
coverage could be obtained. This led to a controlled microstructure formation with controllable mechanical
properties. The good homogeneity of CNP decorated on Al,O5 particles played an important role in the formation of
an interconnected carbon layer along the Al,O5; boundaries influencing the final mechanical properties, as shown in
Figure 8 . The controlled amount of CNP decoration at the grain boundaries influenced the hardness of the

composites, which was determined by an indentation test.

Spherical indentation ( R=200 um)
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Figure 8. (a) Microstructure of 0.6 vol% carbon nanoparticles (CNP)-Al,O5; composite using Al,O5 with the average
diameter of 62 pm. (b) Grain boundary of CNP—Al,O3 composite. A carbon layer could be observed at the interface
between the Al,O5; matrix. (¢) Hysteresis curves of indentation load and penetration depth of 1.0 vol% CNP—-Al,O5

composites.
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2.5.2. Porous Ceramic Composites

Porous ceramic materials with controllable microstructures possess a good potential for applications such as heat
insulation, sound dampening, bio-ceramics, and as catalyst carriers for lightweight structural components 241451, |n
the fabrication of porous ceramic materials, various methods such as sol-gel, freeze-casting, the addition of a
pore-forming agent, and partial sintering methods are employed 4847 However, the achievement of a controlled
homogenous distribution of the porous structure remains a challenge, especially when more than one elemental
material is used in the composite mixture. The use of the EA method to control the formation of a porous ceramic
material consisting of Al,O5 and silica (SiO,) without the use of pore-forming agents has been recently reported. By
changing the volume percent of SiO, particles addition, which affects the coverage percentage of SiO, on the
surface of Al,O3, the control of microstructure formation, open porosity, as well as the mechanical properties of the

sintered Al,03;—SiO, composite ceramics were demonstrated.

2.5.3. Translucent Ceramic Composite Films with Controllable Optical Properties

In ceramic film formation, thermal spraying and chemical vapor deposition are commonly used. Due to limitations
such as expensive equipment and the thermal stability of substrates, researchers have opted for a more rapid and
low-temperature ceramic film fabrication method 48149l The feasible formation of compact ceramic films by aerosol
deposition (AD) was discovered by Akedo, and since then, this method has been used for various types of ceramic
film fabrication #ABABLG2E3 The advantages of the AD method are the rapid ceramic film formation rate and the
feasibility of room temperature impact consolidation (without heat treatment) 241551, To deposit composite ceramic
films with good transparency and desired optical properties, a homogeneous mixture of starting materials is
indispensable. Therefore, electrostatic assembled composite powder can be used to obtain the desired optical
properties of aerosol-deposited ceramic films . With a homogeneous decoration of indium tin oxide (ITO) or cerium
oxide (CeO,) nanoparticles on Al,O3 as shown in Figure 9, tailoring of the ultraviolet and infrared light adsorption
properties of transparent Al,O; composite films have been recently reported. As shown in the schematics in Figure
9, inhomogeneous powder mixtures with agglomeration will affect the film deposition uniformity, thereby causing

the property deterioration of the AD films as compared to electrostatically assembled composite powders.
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Figure 9. (a) Schematics of the ITO-Al,O; and CeO,—Al,O3 nanocomposite formation via an electrostatic
adsorption method while (b,c) are the SEM images of the as-obtained ITO-AlLO; and CeO,-Al,03
nanocomposites, respectively. The schematic of aerosol-deposited films using (d) mixed oxide nanoparticles and
(e) homogenous electrostatically adsorbed nanocomposite oxide particles. Reprinted with permission from [31],

copyright (2019) Elsevier.

2.6. Controlled Properties of Poly (Methyl Methacrylate) (PMMA) Composites

In the design of lightweight and portable devices, advanced polymer composites with desired properties such as
good heat conduction, electrical conductivity, and controlled optical properties are indispensable. The fabrication of
high-performance polymer composites by controlling the homogeneity and distribution of the organic and inorganic
material composition is one of the important factors for achieving desired properties without compromising the
mechanical properties . Among the polymeric matrix materials available, poly (methyl methacrylate) (PMMA) is a
well-known material due to its good optical clarity, mechanical strength, and thermal stability; they are said to
possess the potential to replace glass in various applications 28, By using the EA method, the homogenous
distribution of functional materials within the PMMA matrix has been reported to enable the generation of desired
and unique properties in PMMA matrix composites BAB8IE |y a recent study, Yokoi et al. demonstrated the
controllability of the thermal conductivity of hexagonal boron nitride (hBN)/PMMA composites by either adjusting
the sizes of the hBN sheets or the particle size of PMMA particles used in the EA process . Interestingly, the

controlled decoration of hBN sheets within the PMMA matrix led to either the percolation of hBN or a layer-oriented
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microstructure demonstrating the different heat conduction behaviors, as shown in Figure 10. On the other hand, in
a different application of infra-red (IR) filtering, Tan et al. reported the homogeneous decoration of nano-sized ITO
particles within the PMMA matrix in the fabrication of IR filtering PMMA—-ITO composite pellets . Precise control of
the amount and decoration of ITO within the PMMA matrix is a crucial factor in maintaining the visible light
transmission within the composite 261, A good distribution of ITO nanoparticles within the matrix would generate
a 3D-ITO framework creating plasmonic responses as well as electric field coupling that results in the IR ray

reflectivity for filtering effect generation [62163](64],
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Figure 10. (A) Schematic illustrations showing the composite morphologies of hexagonal boron nitride (hBN)/poly
(methyl methacrylate) (hBN/PMMA) and PMMA/hBN composite particles with the corresponding microstructures
obtained. (B) Thermograph images of (a) PMMA, (b) PMMA (0.3 um)/hBN (18 um), and (c) hBN (5 pm)/PMMA (12
um) composite pellets after infrared thermography irradiation. Reprinted with permission from &, copyright (2020)
MDPI.
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