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Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels.
Under physiological conditions, PVAT plays a significant role in regulation of vascular tone, intravascular
thermoregulation, and vascular smooth muscle cell (VSMC) proliferation. PVAT is responsible for releasing
adipocytes-derived relaxing factors (ADRF) and perivascular-derived relaxing factors (PDRF), which have

anticontractile properties.

obesity perivascular adipose tissue exercise endothelial dysfunction

| 1. Introduction

Today, an increasing prevalence of obesity is observed in many countries, since a third of the worldwide population
is described as obese or overweight 1. National survey data from 2000 to 2018 in the USA reported that obesity
prevalence increased to over 42% among adults, and the prevalence of severe obesity (BMI = 40 kg/m 2) doubled
to 9.2% over the study period [&. Weight problems and obesity are increasing at a rapid rate in most of the EU
Member States, with estimates of 52.7% of the EU’s population being overweight in 2019 Bl According to the
Global Burden of Disease study, 4.7 million people died prematurely in 2017 as a result of obesity 4. Obesity is a
risk factor for developing many disorders such as diabetes mellitus, hypertension, cardiovascular events,
obstructive sleep apnea syndrome, certain cancers, and musculoskeletal diseases [2l. Obesity also has a negative

impact on quality of life and increases the costs of healthcare €I,

Adipose tissue is known as an endocrine organ. By producing adipokines, it regulates various metabolism
pathways and processes such as insulin sensitivity, energy metabolism, blood flow, and even inflammatory stage 8
(8 Adipose tissue is divided into two main subtypes: white (WAT) and brown (BAT), according to their characteristic
and different properties. WAT is responsible for storage of the excess of energy as fatty acids, while BAT mostly
specializes in thermogenesis (19, There is also a third type of adipocyte, termed the “beige” adipocyte. It is a brown

adipocyte that arises within white adipose depots and also has thermogenic capacity (111,

Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels. PVAT
is located around the aorta, coronary arteries, small and resistance vessels, and vasculature of the
musculoskeletal system 121311141 On the contrary, PVAT is absent among cerebral vessels 22, |t consists of stem
cells, adipocytes, mast cells, and nerves 87 PVAT lies outside the adventitia, with no laminar structures or any

organized barrier separating them from each other. Although PVAT characteristics resemble both brown and white
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adipose tissues, recent evidence suggests that PVAT develops from its own distinct precursors, implying a closer
link between PVAT and the vascular system 18 PVAT at different anatomical locations presents different
phenotypes. PVAT demonstrates WAT, BAT, and mixed phenotypes, depending on their anatomical placement 12,
In the abdominal PVAT, white adipocytes are more abundant, whereas thoracic PVAT contains more brown
adipocytes. These regional differences in PVAT could explain the higher susceptibility of the abdominal aorta to
atherosclerosis compared to the thoracic aorta 292122 Moreover, gender influences differences in PVAT. After
menopause in women, there is an increase in perivascular and pericardial adipose tissue, and additionally, the
volume of aortic PVAT positively correlates with the reduction in estradiol 23241 Additionally, in obesity
experimental models, the PVAT mass and adipocyte size are increased 23, PVAT, similar to every other adipose
tissue, secretes cytokines, hormones, growth factors, and adipokines. It plays a beneficial role as long as adipokine
levels with opposing properties remain in equilibrium. In obesity, PVAT becomes dysfunctional and exerts

detrimental effects on vascular homeostasis 28],

2. The Influence of PVAT-Derived Factors on Vascular
Function

Under physiological conditions, PVAT plays a significant role in the regulation of vascular tone, intravascular
thermoregulation, and vascular smooth muscle cell (VSMC) proliferation ( Figure 1 ) 2728129 pyAT exhibits an
anticontractile effect as a response to several factors such as endothelin-1, phenylephrine, angiotensin Il, and
serotonin [BABLE2 pyAT anticontractile factors are divided into adipocytes-derived relaxing factors (ADRF) and
perivascular-derived relaxing factors (PDRF) BYEBLUE2E3] On the other hand, PVAT induces vasoconstriction by
releasing angiotensin 1l B4 and the superoxide anion B2, These factors affect vascular tone via endocrine and
paracrine mechanisms. Moreover, VSMCs play a significant role in maintaining the balance between
vasoconstriction and vasodilator signals. However, PVAT, as a special adipose tissue, is not only a mechanical
support for the vasculature but plays a vital role in the homeostasis of the vascular system, sharing a status no less

important than that of the endothelium 38,

Hydrogen sulfide (H 2S) is a gaseous factor, which is produced by PVAT, endothelial cells, and VSMCs, controlling
the vascular tone. H 2S-induced vasodilation is caused by activation of BK channels in VSMCs, which leads
towards cell membrane hyperpolarization, inactivation of voltage-dependent I-type Ca 2+ channels, and a decrease
in intracellular Ca 2+ concentration 7. In addition, H 2S leads to a dose-dependent decrease in intracellular pH,
which causes the vasodilation. It is suggested that the Cl — /HCO 3- ionic exchanger is engaged in this process
38 The shortage of H 2S is important in the development of various cardiovascular diseases, such as

hypertension, atherosclerosis, and heart failure 2,

Components of the renin—angiotensin—-aldosterone system (RAAS) are present in the aortic and mesenteric PVAT,
except renin 2% The effect of factors on vascular tone is different. Angiotensin 1-7 induce vasodilation by
endothelium-dependent mechanisms. After the activation of the Mas receptors, located in the endothelium, the
synthesis of NO is increased, which leads to vasodilation by the activation of BK channels 2. On the contrary,

angiotensin Il, which is also produced by PVAT, induces vasoconstriction. There are regional differences in
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angiotensin Il synthesis by PVAT, while it is greater in mesenteric adipose tissue than in the periaortic adipose
tissue 38, Moreover, angiotensin Il in increased concentration activates immune cells, which can produce

cytokines and proinflammatory mediators 42,

Nitric oxide (NO) is a well-known endogenous gas with vasodilative properties, which is produced in almost all
human cells. There are three isoforms of NOS: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial
NOS (eNOS) 43l Each of them is characterized by different attributes. nNOS is present in cells of the central and
peripheral nervous system, where produced NO acts as a neurotransmitter and plays a role in the central
regulation of blood pressure 4l iNOS is activated by inflammatory cytokines and plays a role in inflammation;
additionally, iINOS is Ca 2+ independent, unlike other isoforms 43, eNOS, which is located in endothelial cells,
regulates blood pressure locally and has an antiatherosclerotic effect #4453, PVAT is responsible for increased
production of NO by a direct mechanism, while eNOS isoform is also present in PVAT, where NO is directly
produced and released affecting vasculature 81, In addition, NO produced in PVAT positively regulates adiponectin
release by PVAT (7. On the other hand, PVAT-derived factors, mentioned in previous sections, increase NO
production, which is responsible for activations of BK channels and stimulating cGMP synthesis endothelium and

smooth muscle cells.

3. The Role of Inflammation, Oxidative Stress, and Hypoxia
in Obesity

Obesity is characterized by an excessive level of triglycerides and lipids, which are stored in adipocytes. It leads to
their hyperplasia and hypertrophy, where hyperplasia is a well-tolerated complication. In contrast, it is suggested
that the capacity of lipid storage and subsequent growth in adipocyte size is limited, and exceeding this threshold
induces serious molecular changes and induces cellular dysfunction and death of adipocytes 48, Moreover,
enlarged adipocytes induce elevation of IL-6, IL-8, and leptin and decrease the level of adiponectin, which leads to
consequent accumulation of inflammatory factors in PVAT 4259 Cytokines, fatty acids, and cell-free DNA, which
are excreted after adipocytes apoptosis, induce migration of macrophages to the adipose tissue. Adipose tissue
macrophages are divided into two subgroups, which differ from each other by type of secreted cytokines and cell
markers: M1 with an inflammatory profile and M2 with an immunosuppressive feature B, The M1 subclass
secretes cytokines such as TNF-a, IL-6, and IL-1[3 and plays a significant role in inducing an inflammatory state in
adipose tissue, which is important in the development of vascular disorders. Obesity is accompanied by a chronic
low-grade inflammatory state, which is confirmed by an elevated level of inflammatory markers, especially C-

reactive protein and IL-6, which are significantly higher among obese nonmorbid patients and positively correlates
with BMI (521531,

The excess of carbohydrates, fatty acids, and hyper nutrition induce oxidative stress activation by various
pathways such as glycoxidation, oxidative phosphorylation in mitochondria, and NADPH oxidase (NOX) activation
with consequent reactive oxygen species (ROS) production 2455, The increase in NOX activity leads to excessive
production of the superoxide anion (O 2- ), which can react with DNA, lipids, and proteins leading to their

destruction 58, Moreover, O 2- leads to the alteration of NO activity and consequent endothelial dysfunction and
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cardiovascular events among obese populations BZ. In addition, an elevated level of ROS induces VSMC

proliferation and remodeling, which contribute to hypertension development and increased risk of cardiovascular
events (58159,

Moreover, hypertrophy of adipocytes does not proceed hand in hand with angiogenesis, and the demand of tissues
for oxygen is greater than the supply. As a result, hypoxia and consequent necrosis and inflammation occur 89,
Hypoxia-inducible factor (HIF-1a), which is increased in adipose tissue among obese individuals, plays the role of
mediator in hypoxia. HIF-1a induces the elevation of IL-6 and TNF-a activity and reduces adiponectin

concentration (611,

4. The Potential Influence of Diet on PVAT-Derived Factors
among Obese Patients

Besides exercise, an adequate diet is another beneficial intervention in weight loss and obesity treatment.
Nowadays, there are a wide variety of diet strategies, which differ from one another in terms of the percentage
content of macronutrients, such as carbohydrates, proteins, and fats. However, a reduction in daily calorie intake is
a universal rule and a recommended strategy in weight loss 62, Some data that present the influence of dietary
intervention directly on PVAT are available. Nevertheless, the association between diets and PVAT are not clearly
understood. Reports mainly refer to animal models, in which high-carbohydrate (HC) diets induce obesity and the
consequent loss of the anticontractile effect of PVAT by an imbalance in PVAT-derived factor secretion 83, In
contrast, Costa et al. have shown that consuming an HC diet for 4 weeks enhanced the release of vasodilatory
factors from PVAT, suggesting that this could be a compensatory adaptive characteristic in order to preserve the
vascular function during the initial stages of obesity 4. Additionally, it is suggested that imbalanced diets can
cause PVAT inflammation and dysfunction as well as impaired vascular function. The recent published study has
showed that a high-fat (HF) and a high-sucrose (HS) diet affected PVAT at different sites. Sasoh et al. have
presented characteristic differences in the effects of HF and HS diets on PVAT and aortae [62!. A HF diet induced an
increased number of large-sized lipid droplets and increased cluster of differentiation (CD) 68+ macrophage- and
monocyte chemotactic protein (MCP)-1-positive areas in the abdominal aortic PVAT (aPVAT). Furthermore, a HF
diet caused a decreased collagen fiber-positive area and increased CD68+ macrophage- and MCP-1-positive
areas in the abdominal aorta. In contrast, a HS diet induced an increased number of large-sized lipid droplets,
increased CD68+ macrophage- and MCP-1-positive areas, and decreased UCP-1 positive area in the thoracic
aortic PVAT (tPVAT). Moreover, a HS diet caused a decreased collagen fiber-positive area and increased CD68+
macrophage- and MCP-1-positive areas in the thoracic aorta. However, there were some factors that did not follow
the trend to this variation. For example, angiotensinogen levels were increased in both tPVAT and aPVAT of the HF
group. The authors concluded that the potential mechanisms underlying these effects may be related to the
different adipocyte species that comprise tPVAT and aPVAT 83, Victorio et al. reported that the effect of HF and HS
diets on PVAT differs depending on sex (8. The anti-contractile effect of PVAT was measured by comparing the
phenylephrine-induced contraction in mesenteric arteries after 3 and 5 months of HF or HF+HS diet among male

and female mice. The results showed that anticontractile function was impaired after 3 months of both obesogenic
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diets among females, while among males, the anti-contractile effect remained comparable during the experiment.
Moreover, the assessment of PVAT-derived endothelial function after acetylcholine administration likewise
demonstrated differences between sexes, while obesogenic diet among females induces endothelial dysfunction

after 3 months and only after 5 months among males.

However, there are many reports that relate the positive impact of different diets on inflammatory state, oxidative
stress, NO, adiponectin, or leptin concentration. Thus, one could conclude that similar changes could be observed

in PVAT; however, further studies should be conducted.

The Mediterranean diet (MD) is the most popular diet and is commonly known as a healthy, balanced diet with
proven efficiency in reducing the cardiovascular risk among high-risk patients and reducing overall mortality 671681,
A typical MD contains 55-60% carbohydrates, mainly complex ones, 25-30% polyunsaturated and
monounsaturated fats, and 15-20% proteins, and meals are generally based on fish, nuts, olive oil, and plant-
based foods 9. Luisi et al. reported that the implementation of an MD for 3 months among overweight/obese
patients, with high-quality extra virgin olive oil, induced weight loss and the significant elevation of adiponectin
levels 9. Interestingly, among normal weight controls, the MD has no impact on weight, and the increase in
adiponectin concentration was not as considerable as that found among overweight/obese patients. It can be
concluded that weight loss and the consequent reduction in adipose tissue contribute to a size reduction in
adipocytes and an improvement in adiponectin synthesis and release. Among both groups, the concentration of IL-
6 significantly decreased after dietary intervention, which provides proof of the anti-inflammatory properties of MD
79 Moreover, it is suggested that the higher the amount of fiber in one’s diet, the greater the adiponectin

concentration in one’s blood [Z1].

Recently, the ketogenic diet has become very popular due to its therapeutic properties in relation to different
diseases. It has been widely used in drug-resistant epilepsy with good outcomes and is increasingly being used in
metabolic disorders such as obesity or diabetes mellitus 7273 The ketogenic diet is characterized by low
carbohydrates and high fat, inducing changes in the metabolism of energy substrates, with a switch from glucose
to fatty acids Z2. A very low-calorie ketogenic diet (VLCKD) is a special type of caloric reduction diet characterized
by a very low or extremely low daily food energy intake, circa 800 kcal per day 4. It provides 30-50 g of
carbohydrates, about 30—40 g of fats, and 0.8-1.5 g/kg of ideal body weight (IBW) of proteins /2. Monda et al.
reported that obese patients who consumed a VLCKD diet for 8 weeks presented with a significant body mass
reduction, a decreased concentration of inflammatory markers such as IL-6, TNF-a, and CRP, and a significant
elevation in the level of adiponectin in their blood 4. This relatively short period of intervention induced a
significant multifactorial improvement; however, the main limitation of the aforementioned study is the small sample

size. In other reports, the ketogenic diet has also been proven to have anti-inflammatory properties 871,
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