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Copper-catalyzed cross-coupling reaction of a copper carbene intermediate with terminal alkynes was one of the

most powerful protocols for the construction of C–C bonds. However, in early works, a mixture of alkynoates and

allenoates was generated in combined moderate yields under harsh reaction conditions. Until 2004, Fu reported

the first example of the copper-catalyzed coupling reaction of terminal alkynes with diazo esters or diazo amides to

yield 3-alkynoate or 3-butynamide products selectively with minimal amount of allene byproducts under no-basic

conditions. Consequently, a variety of copper-catalyzed coupling reactions of terminal alkynes with various carbene

precursors have been developed independently.

copper catalysis  carbene intermediate  alkyne functionalization

1. Alkynylation

1.1. Alkynylation Terminated by Protonation

In 2012, Wang reported a copper-catalyzed cross-coupling of N-tosylhydrazones 1 with trialkylsilylethynes 2,

leading to the alkynylated products 4 via the formation of C(sp)–C(sp ) bonds (Scheme 1). Mechanism study

shows that migratory insertion of copper carbene species gives the alkynoate copper intermediate 3, and

sequential protonation affords the target products 4. This coupling reaction proceeded efficiently with N-

tosylhydrazones derived from aromatic and aliphatic aldehydes or ketones in moderate to excellent yields without

detecting the formation of allene byproducts 5. However, when a tert-butyl substituted alkyne 7 was employed, the

corresponding allene product 8 was formed selectively .

3
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Scheme 1. Cross-coupling reaction of N-tosylhydrazones with terminal alkynes.

Later in 2014, Zhou reported a copper-catalyzed coupling reaction using dialkoxycarbenes 9 as carbene precursor

, which provides unsymmetrical propargylic acetals 11 in moderate to good yields (Scheme 2).

Scheme 2. Cross-coupling reaction of dialkoxycarbenes with terminal alkynes.

In 2018, an asymmetric coupling reaction of N-tosylhydrazones 12 with terminal alkynes 13 was achieved by

Uozumi and co-workers using chiral copper(I)/phosphoramidite complex as the chiral catalyst (Scheme 3), and

optically active alkynylated product 14 was generated in moderate to good yields and enantioselectivities .

[2]
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Scheme 3. Chiral Cu(I)/phosphoramidite complex catalyzed asymmetric coupling reaction.

1.2. Alkynylation Terminated by Electrophilic Addition

Beyond the copper-catalyzed alkynylation terminated by protonation, the alkynoate copper intermediates, formed in

situ from copper carbene species and terminal alkynes, could be intercepted through a nucleophilic substitution or

electrophilic addition process. In 2015, Wang and co-workers contributed a three-component cross-coupling

reaction of terminal alkyne with α-diazo ester and alkyl halide or Michael acceptor . In this transformation, α-

diazoesters 15 react firstly with the (triisopropylsilyl)acetylene 16 through a migratory insertion process to form the

alkynoate copper intermediate 17, followed by a nucleophilic substitution with alkyl halides 18 or Michael addition

with electron-deficient alkenes 20 to produce the three-component products 19 and 21, respectively (Scheme 4).

This transformation represents a highly efficient method for the construction of alkynylation products with an all-

carbon quaternary center in moderate to high yields. Notably, the copper catalyst works as the only catalyst to

install two new C–C bonds on the carbenic carbon in this reaction.

[4]
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Scheme 4. Copper-catalyzed alkynylation terminated by nucleophilic substitution/Michael addition.

In 2018, Hu and co-workers reported a copper-catalyzed three-component [1+2+2]-cycloaddition of trifluoromethyl

diazo compounds 22 with terminal alkynes 23 and nitrosoarenes 24 . With this method, a series of

trifluoromethyl-substituted dihydroisoxazoles 26 were obtained in high yields under mild conditions.

Mechanistically, electrophilic trapping of the alkynoate copper intermediate by nitrosobenzenes was proposed as

the key step in this cascade transformation, which forms a proposed intermediate 25, followed by a copper

catalyzed intramolecular annulation to deliver the target products 26 (Scheme 5).

Scheme 5. Three-component reaction of diazo compound with terminal alkyne and nitrosobenzene.

One year later, the same group reported a copper-catalyzed three-component reaction of terminal alkynes 10 with

α-diazoamides 27 and isatin ketimines 28 in 2019 . A series of alkynyl-containing 3,3-disubstituted oxindoles 30

were efficiently formed in high yields and diastereoselectivities through a Mannich type trapping of an in situ

generated alkynoate copper intermediate 29 (Scheme 6).

[5]
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Scheme 6. Copper-catalyzed three-component reaction of α-diazoamide with terminal alkyne and isatintetimine.

1.3. Alkynylation Terminated by β-Elimination

Besides the intermolecular trapping reactions of the alkynoate copper intermediate, β-H elimination could occur

with this reactive species, providing a variety of conjugated enynes. Representative advances in this area have

been reported by Wang’s group . In 2015, they reported a copper-catalyzed cross-coupling reaction of

terminal alkynes 9 with trifluoromethyl ketone N-tosylhydrazones 31, which provides an efficient synthesis of 1,1-

difluoro-1,3-enyne derivatives 33 under mild reaction conditions . Mechanistically, the alkynoate copper

intermediate 32 was generated in situ through a migratory insertion of the copper carbene intermediate, followed

by β-F elimination, leading to the gem-difluoroolefination products 33 in moderate to high yields [Scheme 7, Eq.

(a)]. Later, researchers reported a copper-catalyzed three-component reaction of a (triisopropylsilyl)acetylene 16

with Ethyl diazoacetate 34 (EDA) and aldehydes 35 that provided an efficient method for the synthesis of α-alkynyl-

α, β-unsaturated esters 37 . In this cascade reaction, nucleophilic aldol addition of an alkynoate copper

intermediate with aldehyde 35 formed product 36, which delivered the desired products 37 as a single (E)-

stereoisomers through an elimination process in good to excellent yields [Scheme 7, Eq. (b)]. In the same year, an

analogous cross-coupling reaction with α-diazo phosphonates 38 instead of EDA through a sequential

alkynylation/aldol addition/Horner−Wadsworth−Emmons (HWE) type reaction was disclosed by the same group .

This method provided straightforward access to conjugated enynes 40 with good stereoselectivity and excellent

functional group compatibility [Scheme 7, Eq. (c)]. Moreover, one C–C bond and one C=C bond were formed

successively in a one-pot manner, making those novel enynes synthesis methods practically useful.

[7][8][9]

[7]
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Scheme 7. Copper-catalyzed alkynylation terminated by β-elimination. (a) Coupling reaction of N-tosylhydrazone

with alkyne. (b) Coupling reaction of diazoacetate with alkyne. (c) Coupling reaction of α-diazo phosphonate with

alkyne.

2. Allenylation

2.1. Allenylation Terminated by Protonation

As a complementary to Fu’s method for the selective synthesis of alkynoates , in 2011, Fox’s group reported a

selective coupling reaction of α-substituted-α-diazoesters 41 with terminal alkynes 10 to the syntheses of

allenoates in the presence of Cu(II)(trifluoroacetylacetonate)  and 3,6-di(2-pyridyl)-s-tetrazine L2 in DCE . As a

result, allenoates 43 were obtained as the main products with slight traces of the alkynoates. Key to the

development of this selective method was the recognition of an adventitious base, potassium carbonate, which

improved the selectivity of isomerization to form the allenoate products (Scheme 8).

[10]

2
[11]
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Scheme 8. Cross-coupling reaction of copper carbene with terminal alkynes for the synthesis of allenoates.

Later in 2013, an efficient copper-catalyzed cross-coupling between diazoacetamides 44 and terminal alkynes 10

under ligand-free conditions was developed by Sun . This method provided a practical method for the assembly

of substituted 3-butynamides 45 and dienamides 46. Interestingly, when sodium carbonate was added to the

reaction mixture, the allenic compounds 46 were obtained as the main products. However, alkyne products 45

were generated as the major products in the absence of this base (Scheme 9). Moreover, the alkynoate

compounds 45 could be smoothly converted into the isomeric allenes 46 in the presence of sodium carbonate

without assistance of the copper catalyst.

Scheme 9. Copper-catalyzed divergent cross-coupling reaction of diazoacetamides with terminal alkynes.

[12]
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In the same year, Wang and co-workers developed a series of synthetic methods to form substituted allenes under

optimized conditions in the presence of copper(I) complexes 15]  Diffident types of substituted diazo

compounds and N-tosylhydrazones were employed as the carbene precursors for the coupling with various

terminal alkynes, delivering the allenoic derivatives in good yields with a wide range of functional group tolerance

(Scheme 11). Notably, ethyne 54 was also a compatible substrate for this reaction, which leads to a new synthetic

method for the synthesis of terminal allenes 55 in moderate to excellent yields  . However, using one equivalent

amount of CuI with DMF as the solvent is critical to the success of this transformation [Scheme 10, Eq. (d)].

Scheme 10. Copper-catalyzed cross-coupling reaction for the syntheses of substituted allenes. (a) Cross-coupling

reaction of diaryl diazo compound with alkyne. (b) Cross-coupling reaction of diazo compound 49 with alkyne. (c)

Cross-coupling reaction of N-tosylhydrazone 51 with alkyne. (d) Cross-coupling reaction of 53 with acetylene.

In 2015, a copper-catalyzed coupling reaction between flow-generated unstabilized diazo compounds and terminal

alkynes was reported by Ley’s group, providing a practical method for the synthesis of di- and tri-substituted

[13][[14][ [16]
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allenes 59 in high yields under mild conditions . The unstable diazo compounds 57 were generated in situ from

hydrazones 56 through oxidation with activated MnO . Then, the above solution was injected directly into the other

reaction mixture, which contained terminal alkynes 58, base, and CuI catalyst. The reaction delivered the allene

products 59 in good to excellent yields. To highlight the selectivity and functional group compatibility of this

protocol, norethindrone and propargylated quinine were successfully applied to the optimal reaction conditions,

generating the corresponding products in 63% and 82% yields, respectively (Scheme 11).

Scheme 11. Copper-catalyzed cross-coupling reaction via flowing chemistry.

In addition to the diazo compounds, conjugated eneyne ketones 60 were introduced as carbene precursors by

Wang and co-workers in 2016 in a copper-catalyzed cross-coupling reaction with terminal alkynes . This

reaction afforded trisubstituted allenes 61 in high yields with broad functional group tolerance under mild reaction

conditions (Scheme 12).

[17]

2
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Scheme 12. Copper-catalyzed cross-coupling reaction of conjugated eneyne ketones with terminal alkynes.

In 2015, Feng and Liu contributed an asymmetric cross-coupling of α-diazoesters 15 with terminal alkynes 10 using

chiral Cu(I)/ guanidine complex as the catalyst . Notably, no additional base was necessary for this

transformation, providing optically active 2,4-disubstituted allenoates 62 under mild reaction conditions in good to

high yields (up to 99 %) with good to excellent enantioselectivities (Scheme 13).

Scheme 13. Asymmetric cross-coupling reaction catalyzed by copper/guanidine complex.

In 2016, Wang and co-workers reported a highly enantioselective copper-catalyzed cross-coupling of

aryldiazoalkanes 57 with terminal alkynes 10 . By utilizing chiral Cu(I)/bisoxazoline ligand L4, this reaction

delivered a series of trisubstituted allenes 63 in moderate to high yields (up to 96%) with excellent

enantioselectivities (up to 98% ee). Unlike the previous works using CuI as the catalyst, Cu(MeCN) PF  complex

was used as the optimal metal catalyst to enable high reactivity and stereoselectivity in this reaction (Scheme 14).

[19]

[20]
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Scheme 14. Asymmetric cross-coupling reaction catalyzed by copper/Box complex.

One year later, Ley’s group reported their continuous flow strategy for the asymmetric coupling reaction of

unstabilized diazo compounds 65 with propargyl amines 66 in the presence of chiral Cu(I)/PyBIM complex . This

method generated the amino-substituted chiral allenoates 67 in moderate yields (up to 57%) with high

enantioselectivities (up to 96% ee) in a fast reaction rate (10–20 min) with a variety of functional group compatibility

(Scheme 15).

Scheme 15. Asymmetric cross-coupling reaction catalyzed by copper/PyBIM complex through flowing chemistry.

2.2. Allenylation Terminated by Electrophilic Addition

In 2018, a one-pot copper-catalyzed asymmetric three-component reaction of diazoesters 15 with terminal alkynes

10 and isatins 68 was reported by Liu’s group . Axially chiral tetra-substituted allenoates 70 bearing a

stereogenic center were obtained under a chiral Cu(I)/guanidinium salt/YBr  catalytic system with high diastereo-

and enantioselectivities. The aldol type addition of allenoate-copper intermediates 69 with isatins 68 has been

[21]

[22]
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proposed as the key step in this reaction. Moreover, convincing experimental evidence for the formation of

allenoate-copper intermediate 69 was provided through the synthesis of chiral allenoate, which was generated from

the C–H insertion reaction of α-diazoester with alkyne. Researchers found that additional acids improved the

catalyst efficiency of the chiral copper complex. The intramolecular nucleophilic trapping reaction of allenoate-

copper intermediate with embedded aldehyde species was also successful, generating the cyclic allenoate product

73, albeit the yield and stereoselectivity were moderate (Scheme 16).

Scheme 16. Asymmetric three-component reaction for the synthesis of tetra-substituted allenoates.

Recently, Sun’s group has realized an enantioselective intramolecular nucleophilic aldol addition of in situ formed

allenoate-copper intermediate with aldehyde using chiral Cu(II)/Box complex . Distinct from the previous version

with copper(I) catalysts, this protocol used copper(II) salt as an optimal catalyst in this asymmetric cross-coupling

reaction. The tetra-substituted allenoates 75 containing both central and axial chiralities have been obtained in

moderate to good yields with good to excellent stereoselectivities. (Scheme 17).

[23]
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Scheme 17. Copper-catalyzed asymmetric allenylation terminated by aldol addition.

2.3. Allenylation Terminated by Allylation

In 2016, Wang and co-workers realized the synthesis of allyl-substituted allenes through trapping of allenoate-

copper intermediate with allyl bromide through a nucleophilic substitution process  In this reaction, conjugated

eneyne ketones 60 have been used as the carbene source. Mechanistically, the cooper-(2-furyl) carbene

intermediate was generated in situ from eneyne in the presence of CuI, followed by a migratory insertion process to

afford nucleophilic alkynoate copper intermediate 77 that was trapped by allyl halide 76 (Scheme 18). In this

method, the choice of the base was pivotal for the reaction outcomes when K CO  was employed as the base,

affording 2-furyl substituted allenes 78 in generally good yields.

[18]

2 3
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Scheme 18. Copper-catalyzed allenylation terminated by allylation.

2.4 Cascade Transformations Involving Allenylation Process

Nucleophilic addition with allenoic ester or its isomeric compound is generally used synthetic strategy for the

expeditious construction of highly functionalized carbocycle or heterocycle structures .

Thus, a variety of inter- or intramolecular cascade reactions have been developed through different nucleophilic

addition processes of the allene derivatives generated from cross-coupling between alkynes and copper carbenes.

In 2011, a one-pot synthesis of phenanthrenes 81 via ligand-free CuBr -catalyzed coupling reaction/intramolecular

cyclization of terminal alkynes 23 with N-tosylhydrazones 79 derived from o-formyl biphenyls was developed by

Wang and co-workers  Allene intermediates 85 were initially generated in this cascade reaction through a cross-

coupling reaction of N-tosylhydrazones 79 with terminal alkynes 23, followed by a 6π-cyclization and isomerization

[24][25][26][27][28][29][30][31][32]

2
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deliver the phenanthrene products 81 with broad functional group compatibility (Scheme 19).

Scheme 19. Copper-catalyzed allenylation followed by 6π-cyclization.

Later in the same year, instead of using o-aryl substituted N-tosylhydrazones, o-hydroxy- or o-amino-substituted N-

tosylhydrazones were introduced by the same group as carbene precursors in an analogous cascade

transformation, a ligand-free CuBr-catalyzed coupling reaction/intramolecular cyclization sequence, achieving the

synthesis of benzofuran or indole derivatives 84 in moderate to excellent yields . The initially formed allene

intermediates 83 were trapped through a nucleophilic addition by the embedded o-hydroxy- or o-amino group to

afford the cyclized products 84 (Scheme 20).

[34]
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Scheme 20. Copper-catalyzed allenylation followed nucleophilic addition.

In 2011, a similar catalytic strategy was developed by Balakishan’s group. They reported a simple procedure for

synthesizing aza- and oxacycles via a copper-catalyzed coupling reaction of functionalized terminal alkynes 85 with

diazoesters 86 . Initially, the allene intermediates were formed in the presence of CuI, followed by an

intramolecular aza- or oxa-Michael cycloaddition and isomerization to generate the cyclized five- or six-membered

products 87 in generally good yields (Scheme 21).

[35]
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Scheme 21. Copper-catalyzed allenylation followed by cyclization.

In 2015, a stereo-divergent synthesis of five-membered heterocycles was developed by Sun’s group . The

proposed reaction mechanism involves trapping in situ formed allene intermediates, yielding 2-methylenes 89

(when PG = Bn) and 2,3-dihydropyrroles 90 (when PG = Ts) in good yields with broad functional group tolerance

under mild conditions. Control experimental results show that N-benzyl amino alkynes were more likely to form 2-

methylenespyrroles derivatives 89 through 5-exo-dig cycloaddition, while 2,3-dihydropyrroles 90 generated from N-

tosylamino alkynes through 5-endo-dig cycloaddition would be more favorable (Scheme 22).

Scheme 22. Copper-catalyzed allenylation followed by divergent annulation.

In 2018, Sun and co-workers expanded the above chemistry to synthesize the four- to six-membered heterocycles

with N-substituted prop-2-yn-1-amines 91 and diazoacetates 15 . Generated allenoic species 92 have been

proven as the key intermediates for the subsequent diverse annulations under optimized conditions toward

functionalized heterocycle in moderate to good yields. Treatment of allenoates 92 with sodium phenolates led to

six-membered products 93; silver nitrate and triethylamine yielded five-membered products 94; what’s more, four-

membered products 95 were generated under lithium tert-butoxide conditions (Scheme 23).

[36]

[37]
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Scheme 23. Divergent synthesis of four- to six-membered heterocycles involving an allenylation process.

In addition to the cyclization through addition with a heteroatom, carbon-based nucleophilic species could also be

served as the nucleophile to addition with these allenes, forming the C-C bond instead of the C-X bond . In

2015, Kumaraswamy’s group developed a cooper catalyzed cross-coupling reaction/intramolecular Michael

addition cascade reaction , achieving the formation of indene and dihydronaphthalene derivatives 97 in good

yields with broad functional group tolerance (Scheme 24a). Later in 2017, Sun’s group reported an analogous

approach toward five- or six-membered carbo-/heterocycles with diazo compounds 15 and alkyne-substituted

malonates 98 . In this reaction, the ligand  significantly enhanced the reaction yields and inhibited the Conia-ene

side reaction. As a result, the polyfunctionalized cyclohexenes, tetrahydropyridines, and dihydropyrans have been

prepared in moderate to high yields under mild reaction conditions (Scheme 24b).

Scheme 24. Copper-catalyzed allenylation followed by Michael addition.

In 2015, a Cu(I)-catalyzed denitrogenative annulation reaction of pyridotriazoles 100 with terminal alkynes 10 was

developed by Gevorgyan’s group . Initially,  α-pyridyl copper carbenes were generated from pyridotriazoles 100

in the presence of the copper catalyst, followed by a cross-coupling reaction with terminal alkyne to form either

propargylic or allenoic intermediates 101, which were terminated by copper-catalyzed cycloisomerization to furnish

the indolizines 102 in moderate to excellent yields (Scheme 25).

[38][39]

[40]

[41]

[42]
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Scheme 25. Copper-catalyzed allenylation followed by cycloisomerization.

In 2018, Wang and co-workers reported a copper-catalyzed geminal difunctionalization reaction of terminal alkynes

. The key step in this cascade reaction is trapping the in situ generated allenoic species 105 with a sulfonyl

anion to form the carbon-sulfur bond, providing a variety of vinyl sulfones 106 in good yields with excellent

stereoselectivities under mild reaction conditions. It was noted that the excellent stereoselectivities might be due to

the influence of steric hindrance, and no ligand and additive were required in this transformation (Scheme 26).

Scheme 26. Copper-catalyzed allenylation followed by sulfonylation.

Recently, Sun and co-workers demonstrated a copper-catalyzed three-component reaction of terminal alkynes with

diazo compounds and B pin  for the synthesis of trisubstituted alkenylboronates . Copper catalysts played dual

roles in these alkynes’ difunctionalizations. Initially, copper catalyzed the cross-coupling to form an allenoic

intermediate, followed by a copper-catalyzed stereoselective boration reaction with B pin . When diazo compounds

53 were used as carbene precursors, the steric interaction forced the boron group to attack the β-carbon from the

opposite side of the γ-phenyl group on the allenoic species 107, leading to the favored  (Z)-isomers 108 as major

products. Whereas, in the case with N-tosylhydrones 51 as carbene precursors, the addition of Cu-Bpin complex to

[43]

2 2
[44]

2 2



Cross-Coupling-Reaction of Copper Carbene Intermediate with Terminal Alkyne | Encyclopedia.pub

https://encyclopedia.pub/entry/23519 20/36

corresponding allenoic species 109 provided allyl copper intermediate, which was more favored to form a six-

membered ring transition state with the association of MeOH, finally furnishing the more thermodynamically stable

(E)-products 110 (Scheme 27).

Scheme 27. Copper-catalyzed allenylation followed by boroalkylation.

3. Copper Carbene Intermediate Addition onto C-C Triple
Bond

3.1 Cyclopropenation

Cyclopropenation is a well-known reaction of metal carbene intermediate with alkynes. This widely used reaction

could be catalyzed by rhodium , cobalt , gold , silver  and many others . Herein,

selected examples related to copper catalysis will be discussed.

[45][46][47][48][49] [50] [51] [52][53] [54][55][56]
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In 2010, a new tridentate coordination copper complex, Cu[Ms(CH SCN) ]BAr'  (BAr'4 = tetra(3,5-

bis(trifluoromethylphenyl)borate), was designed by Miguel and co-workers by using [Cu(OTf)] •C H  and an

alkylthiocyanate ligand . This catalyst promoted the cyclopropenation of ethyl diazoacetate 34 (EDA) with a wide

range of internal alkynes 111, providing cyclopropenes 112 in moderate yields (Scheme 28). The same

cyclopropenation work was achieved by Dias, unique   bis(pyrazolyl)borate ligand supported [(CF ) Bp]Cu(NCMe)

catalyst was used, yielding cyclopropene products in moderate to high yields .

Scheme 28. Copper/alkylthiocyanate complex catalyzed cyclopropenation.

In 2016, a Cu(I)/N-heterocyclic carbene (CuNHC) complex catalyzed cyclopropenation of internal alkynylsilanes

113 with diazoacetate 15 was reported by Coleman’s group . A series of 1,2,3-trisubstituted and 1,2,3,3-

tetrasubstituted cyclopropenylsilane compounds 114 were isolated in moderate to good yields (Scheme 29). An

interesting regioselective and chemodivergent reaction pathway occurred furnished a tetra-substituted furan

through an intramolecular cyclopropene ring-opening transformation in the case of electron-rich diazoacetate.

2 3 4

2 6 6

[57]
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Scheme 29. Copper/N-heterocyclic carbene (CuNHC) complex catalyzed cyclopropenation.

3.2 Cascade Reaction Involving Carbene/Alkyne Metathesis Process

Carbene/alkyne metathesis (CAM) refers to the processes where a metal carbene reacts with an alkyne,

generating a new vinyl metal carbene intermediate, which was difficult to access with other carbene precursors 

. This in situ generated vinyl metal carbene intermediate could be involved in typical metal carbene reactions,

such as [3+2]-cycloaddition , cyclopropanation , C-H bond insertion , and others .

It’s a general protocol for the synthesis of furan derivatives through transition metal-catalyzed formal [3+2]

cycloaddition of α-diazocarbonyl compounds with alkynes . However, the cases under copper carbenes

mediated were limited. In 2014, Wang’s group developed a copper-catalyzed formal [3+2] cycloaddition reaction of

terminal alkynes with β-keto α-diazoesters 115 (X = O), offering an operationally simple and applicable method for

the synthesis of trisubstituted furans 116 (X = O) with a wide substrate scope (Scheme 30a) . This reaction has

[60]

[61][62]

[63] [64][65][66] [67][68][69][70] [71][72][73]

[74][75][76][77]

[78]
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also been applied to ethyl (E)-2-diazo-3-(methoxyimino)butanoate 115 (X = NOMe) for the synthesis of 2,3,5-

trisubstituted N-methoxypyrroles (X = NOMe). Later in 2016, a Cu(I)-catalyzed cycloaddition of diazoacetates 15

with electron-rich internal aryl alkynes 117 was discovered by Coleman and co-workers . Tetra-substituted

furans 118 were generated in moderate isolated yields with high chemoselectivities and regioselectivities (Scheme

30b).

Scheme 30. Copper-catalyzed carbene/alkyne metathesis for the synthesis of furan derivatives.

In 2016, Xu’s group developed a chemo-divergent copper-catalyzed cascade reaction of alkynyl-tethered α-

iminodiazoacetates 119, providing polycyclic and multi-substituted pyrroles in high yields with a broad substrate

scope . Especially, the tetra-substituted 3-formylpyrroles 124, which were difficult to access by alternate

approaches. Mechanistic studies indicated that the α-imino carbene 120 is the key common intermediate in this

divergent reaction, which was generated by metal-catalyzed carbene/alkyne metathesis of the alkynyl-tethered

diazo compounds 121. When R , R  was imbedded with an aromatic ring, polycyclic pyrroles 122 were formed as

the major products through a [3+2]-cyclization and aromatization process. Whereas, substrates with a methoxy

group on the nitrogen (R  = OMe), the carbene intermediate underwent an N–O insertion/alkoxy

[79]

[80]
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migration/alcoholysis sequence, giving the 3-formylpyrrole products 124 in generally good to excellent yields

(Scheme 31).

Scheme 31. Copper-catalyzed carbene/alkyne metathesis for the synthesis of pyrroles.

At the same time, Xu and co-workers have also developed a copper-catalyzed carbene/alkyne metathesis cascade

reaction with alkyne-tethered diazo compounds 125 . This transformation provided rapid access for the

construction of multi-substituted 4-carboxyl quinoline derivatives 127 in high to excellent yields. In this cascade

reaction, one C═N and one C═C bond were formed with the assistance of the copper catalyst under mild reaction

conditions (Scheme 32a). Later in 2017, Ye’s group reported an analogous protocol by using ynamides 128 as

carbene precursor . In this work, a copper carbene was generated in situ through a catalytic oxidation process in

the presence of quinoline N-oxide, followed by a CAM process and terminated by carbene reaction with an

embedded azide group, providing a wide range of pyrrolo[3,4-c]quinolin-1-ones 130 in good yields. Those works

represented practical methods for the dual functionalization of alkynes (Scheme 32b).
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Scheme 32. Copper-catalyzed carbene/alkyne metathesis for the synthesis of quinolines.

In addition to the nucleophilic addition of the in situ formed copper carbene intermediates, electrophilic aromatic

substitution or C(sp )–H bond functionalization is another useful terminating transformation for the direct

construction of polycyclic fused frameworks. In 2017, Doyle’s group reported a copper-catalyzed intramolecular

cascade reaction of diazo compounds 131, this transformation went through a CAM process followed by a carbene

C(sp )–H bond functionalization cascade, yielding the fused indeno-furanone derivatives 133 in excellent yields

under mild reaction conditions (Scheme 33a) . Instead of terminating reaction in C-H functionalization, a

selective Buchner insertion reaction occurred as the terminating step in Xu’s work when the ortho-aniline

substituted propargyl diazoacetates 134 were employed, selectively affording the dihydrocyclohepta[b]indole

derivatives 136 in moderate to high yields (Scheme 33b). Notably, this reaction described a rare example of the

Buchner reaction with donor/donor type metal carbene species .

2

2

[83]

[84]



Cross-Coupling-Reaction of Copper Carbene Intermediate with Terminal Alkyne | Encyclopedia.pub

https://encyclopedia.pub/entry/23519 26/36

Scheme 33. Copper-catalyzed carbene/alkyne metathesis for the synthesis of tri-cyclic molecules.

In 2018, Xu and co-workers developed an intermolecular copper-catalyzed formal CAM process , which

underwent a copper promoted [3+2] cycloaddition/dinitrogen exclusion/nucleophilic addition process, providing a

direct and effective access to 2H-chromene derivatives 139 in generally good to high yields. Mechanistic studies

indicated that the 3H-pyrazole 138 is the key intermediate in this cascade transformation, and this critical

intermediate was isolated and confirmed by single-crystal X-ray diffraction and spectroscopy analysis for the first

time (Scheme 34).
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Scheme 34. Copper-catalyzed formal carbene/alkyne metathesis for the synthesis of 2H-chromene derivatives.

Based on a similar protocol, a copper-catalyzed formal [1+2+2]-annulation of alkyne-tethered diazo compounds

140 with pyridines 141 has been reported by Xu’s group recently . In contrast to the previously reported cascade

reaction that was terminated the copper carbene intermediate on the carbonic center, a vinylogous addition of vinyl

carbene intermediate with pyridine derivatives was occurred in this reaction, followed by an intramolecular

annulation to form cycloadducts 146, which underwent a decarboxylative aromatization process to form the desired

polycyclic fused indolizine derivatives 147 in good to high yields (Scheme 35, path a), although direct formal [3+2]-

cycloaddition via pyridinium ylide pathway could not be ruled out so far (Scheme 35, path b).
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Scheme 35. Copper-catalyzed formal carbene/alkyne metathesis for the synthesis of polycyclic indolizines.
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