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In conventional routing, a capsule network employs routing algorithms for bidirectional information flow between layers

through iterative processes.
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1. Introduction

A Capsule Network, often referred to as CapsNet, is an advanced type of neural network that employs neuron clusters

known as “capsules”. Unlike traditional Convolutional Neural Networks (CNNs), which output scalar values, these

capsules produce vector outputs. These vectors represent not only the probability of a feature’s existence but also its

instantiation parameters, such as pose (position, size, orientation), deformation, texture, and so on. This richer

representation allows the network to capture and maintain spatial relationships between features more effectively than

traditional methods. CapsNet introduces a unique mechanism, known as “routing-by-agreement”, which replaces the

pooling layers found in conventional CNNs. This routing process enables capsules at one level to send their outputs to

higher-level capsules only if there is a strong agreement (i.e., high probability) that the higher-level capsule’s entity is

present in the input. This agreement is determined according to the dot product between the output of a lower-level

capsule and the predicted output of a higher-level capsule, iteratively refined through a routing process. This architecture

ensures that, during forward propagation, information flows through the network in a way that preserves spatial

relationships, making it inherently more capable of handling variations in viewpoint, scale, and rotation without the need

for extensive data augmentation .

Capsule networks aim to address some fundamental limitations of CNNs, especially in terms of preserving spatial

hierarchies between features within an image. As CNNs rely on the scalar output of neurons within layers for feature

detection and representation, they sometimes fail to recognize objects captured from different viewpoints if they are not

covered in the training data . CapsNets, in contrast, can better preserve the pose information (position and orientation)

of features, thus making them more robust to variations in the input data .

There are several main distinctions between CapsNets and CNNs. First, CapsNets use a vector or group of neurons as a

basic unit, whereas CNNs use a single neuron. These vectors, called capsules, can potentially represent different parts of

an object. Second, while CNNs capture hierarchical features through the depth of the network, with each layer learning

different levels of abstract and complex features, CapsNets model hierarchical relationships between parts and whole

objects, providing more interpretable representations of learned features. Third, unlike CNNs—which lack a dedicated

mechanism for routing information between layers—CapsNets use data-dependent routing to determine the flow of

information between capsules, allowing for better modeling of part–whole relationships.

In classic routing procedures, a CapsNet begins with a set of primary capsules that represent low-level features extracted

from the input data. Each primary capsule makes predictions (or votes) by computing an affine transformation of its output

and sending their votes to the capsules of the next layer. These capsules at the higher level compute a weighted sum of

the predictions received from capsules at the lower level. Routing weights are normalized through layer normalization 

or a squashing function . An iterative routing process is used to determine an agreement on how capsules at one level

should connect to capsules in the next level by updating the weights . In contrast, a non-iterative routing procedure

computes the routing weights and information of capsules only once . By simplifying the process into a single forward

pass, non-iterative routing methods alleviate the computational load associated with iteration.

Unlike conventional routing methods , the cluster routing paradigm involves capsules generating vote clusters (instead

of individual votes) for the subsequent layer’s capsules . Each vote cluster consists of multiple votes, with each vote

potentially originating from a distinct capsule in the previous layer. The proximity of votes within a cluster signifies the

information extracted from the same part of an object from capsules in previous layers. Consequently, the variance within
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a vote cluster can serve as an indicator of the confidence in the encoded information that the vote clusters represent. This

suggests that vote clusters with lower variance are more reliable in encoding information related to a specific part of an

object. Thus, greater weights are assigned to centroids originating from clusters with lower variance.

2. Agreement Routing in Capsule Network

CapsNets play a crucial role in feature encoding. They transform the extracted features into capsules, which are vectors

capable of characterizing parts of an object, unlike the singular units used in conventional CNNs. These capsules possess

the ability to represent more intricate aspects of an object, such as its pose, orientation, and texture style. The capsule

system proposed in the dynamic routing paper titled “Dynamic Routing Between Capsules”  employs a routing-by-

agreement mechanism. This mechanism iteratively determines its predictions based on the agreement between lower-

and higher-level capsules, which is achieved through adjusting the weights connecting them. These endeavors have led

to diverse approaches and innovations in the field. The matrix capsules with EM routing approach  uses high-

dimensional coincidence filtering and a fast iterative process to determine the routing weights, resulting in better

performance and higher robustness to adversarial attacks than baseline CNNs. RS-CapsNet  integrates Res2Net and

Squeeze-and-Excitation blocks to extract multi-scale features, emphasizes useful information, and employs linear

combinations between capsules in order to enhance object representation while reducing the capsule count. Cluster

routing  uses variance as the fundamental indicator of agreement and confidence in the information encoded within the

vote cluster. Group normalization  also utilizes the mean and standard deviation of a group. It splits the output channels

of a convolutional layer into several groups and normalizes the features within each group according to the mean and

standard deviation.

CapsNets can outperform conventional CNNs in various applications, utilizing fewer parameters . This advantage

is particularly notable in medical image processing, where the main obstacles include detecting small lesions and

overcoming class imbalances. Unlike CNNs, which often require substantial amounts of labeled data (that may be scarce

in medical contexts), CapsNets can achieve similar levels of performance with a smaller data set . CapsNets employ

capsules that encapsulate richer feature vectors, unlike CNNs that use scalar neurons, making them more effective in

addressing these challenges . Furthermore, CapsNets are superior in maintaining part–whole relationships and

geometric details, significantly improving their performance in medical segmentation tasks .

AI-generated deepfakes, including face-swapping videos and images, have been proliferating across the internet, driven

by significant advancements in graphics processing units and AI algorithms. These technologies enable individuals to

effortlessly create manipulated and unethical media. In areas such as deepfake detection, where novel and unforeseeable

attacks are frequent, the strong generalization capability of capsules becomes vital. The nature of deepfake technology

allows attackers to continuously develop new methods to bypass detection systems, making it imperative for defense

mechanisms to possess the ability to generalize from known attacks to novel ones effectively. CapsNets are particularly

suited to this task, due to their ability to understand the underlying structure of the data in a way that mirrors human visual

perception. This understanding includes recognizing when an image or video deviates from the norm in a manner that

suggests manipulation, even if the specific technique used for manipulation has not been encountered by the system

before. A notable application of CapsNets in this context is Capsule-Forensic, which has been shown to be effective in

identifying altered or synthetically produced images and videos . The efficacy of CapsNets in this application stems

from their unique ability to encode hierarchical relationships between objects and their components, including detailed

pose information. This makes it an invaluable tool in the fight against the unethical use of AI for media manipulation .

3. Attention Routing

The ideas behind CapsNets share similarities with those of attention mechanisms, initially introduced in transformers .

Attention between capsules  replaces dynamic routing with a convolutional transform and attention routing, thus

utilizing fewer parameters. The inclusion of a dual attention mechanism after the convolution layer and primary capsules

in  enhanced the performance of the CapsNets. The use of a self-attention mechanism in  allowed for alternative

non-iterative routing, efficiently reducing the number of parameters while maintaining effectiveness.
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