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With the rapid development of very-high-resolution (VHR) remote-sensing technology, automatic identification and
extraction of building footprints are significant for tracking urban development and evolution. Nevertheless, while
VHR can more accurately characterize the details of buildings, it also inevitably enhances the background
interference and noise information, which degrades the fine-grained detection of building footprints. In order to
tackle the above issues, the attention mechanism is intensively exploited to provide a feasible solution. The
attention mechanism is a computational intelligence technique inspired by the biological vision system capable of
rapidly and automatically catching critical information.

computational intelligence neural networks building footprint extraction attention mechanism

remote-sensing images

| 1. Introduction

With the rapid development of satellite, aircraft, and UAV technology, it has become easier to obtain high-resolution
and very-high-resolution (VHR) remote-sensing images 1. Based on these high-quality remote-sensing images,
the detailed information of ground objects can be clearly depicted, which facilitates many remote-sensing tasks,
including but not limited to land-cover classification [, object detection B, change detection &, etc. Among the
ground objects covered by VHR images, buildings, as the carrier of human production and living activities, are of
vital significance to the human living environment, and are good indicators of population aggregation, energy
consumption intensity, and regional development Bl. Therefore, the accurate extraction of buildings from remote-
sensing images is conducive to the study of urban dynamic expansion and population distribution patterns,

promoting the digital construction and management of cities, and enhancing the sustainable development of cities
6]

Although some research progress has been made in building footprint extraction in recent years, the diversity of
remote-sensing image sources and the complexity of the environment still bring many challenges to this task,

mainly including:

(a)In optical remote-sensing images, buildings have small inter-class variance and large intra-class variance . For
example, non-buildings such as roads, playgrounds, and parking lots have similar characteristics (such as

spectrum, shape, size, structure, etc.), which are easy to confuse the extraction method [&l.
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(b)Due to the different imaging angles of sensors, high-rise buildings often produce different degrees of geometric

distortion, which increases the difficulty of algorithm recognition 2!,

(c)Due to the difference in the sun’s altitude angle when shooting, buildings tend to produce shadow areas at
different angles, which not only interferes with the coverage area of the building itself, but also easily conceals

the characteristics of other buildings covered by shadows 19,

In recent years, deep learning methods represented by the convolutional neural network (CNN) have shown great
potential in the fields of computer vision 1112 and remote-sensing image interpretation L2114, Wwith the powerful
ability to extract high-level features, CNN-based building footprint extraction methods alleviate the above-
mentioned problems to a certain extent. Most of these methods adopt the fully convolutional architecture of the
encoder—decoder. For example, Ji et al. proposed a Siamese U-shaped network named SiU-Net for building
extraction, which enhances the robustness of buildings of different scales by simultaneously processing original
images and downsampled low-resolution images 2. The method proposed by Sun et al. improves the detection
accuracy of building edge by combining CNN with active contour model 28], Yuan et al. designed a CNN with a
simple structure, which integrates pixel-level prediction activated by multiple layers and introduces a symbolic
distance function to establish boundaries to represent the output, which has a stronger representation ability L718],
In addition, BRRNet proposed by Shao et al. introduced the atrous convolution of different dilation rates to extract
more global features by gradually increasing the receiving field in the feature extraction process and the residual
refinement module to further refine the residual between the result of the prediction module and the real result 221,
However, existing approaches still suffer from challenges and limitations. Most of the methods above are an
extension of the general end-to-end semantic segmentation method, do not carry out targeted analysis of the

characteristics of the building itself, and do not filter the noise effectively.

| 2. Building Footprint Extraction Methods

Remote-sensing imagery can provide effective data support for humans to reform nature, and it has been widely
used in Earth observation 292122 ith the rapid development of aerial photography technology such as satellite
and aviation, high-resolution remote-sensing images allow for observing detailed ground targets such as buildings,
roads, and vehicles. In particular, building footprint extraction is of great significance for urban development
planning and urban disaster prevention and mitigation, since buildings are one of the main man-made targets for
humans to transform the Earth’s surface [22l241125126] Byjlding footprint extraction has been a constant concern by
scholars, and many building footprint extraction methods have been proposed in the past decade. These methods
can be grouped into the following two categories: conventional building footprint extraction methods and deep-

learning-based building footprint extraction methods.

2.1. Conventional Building Footprint Extraction Methods

Building footprint extraction plays an important role in the interpretation and application of remote-sensing images

(271 In the early stage, scholars worked on extracting building footprints through different mathematical models or
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combining multiple types of data information. For instance, Reference [28 designed a fully automatic building
footprint extraction approach from the differential morphological profile of high-resolution satellite imagery. In
Reference 22 a Bayesian-based approach is proposed to extract building footprints through aerial LiDAR data.
This method employs the shortest path algorithm and maximizes the posterior probability using linear optimization
to automatically obtain building footprints. Sahar et al. utilized vector parcel geometries and their attributes to
extract building footprints by using integrated aerial imagery and geographic information system (GIS) data 22!,
These methods often require different types of data support to achieve building footprint extraction, and the results
are not reliable enough BYEBY |n addition, scholars have devoted themselves to designing various hand-crafted
features to automatically extract building footprints from high-resolution remote-sensing images. Zhang et al.
devised a pixel shape index to extract buildings by classifying the shape and contour information of pixels 22,
Huang et al. proposed a morphological building index for automatic building extraction in 231, Similarly, Huang et al.
also developed a morphological shadow index for building extraction from high-resolution remote-sensing images
(341 Moreover, some methods use morphological attributes to achieve building footprint extraction B3l |n
summary, these conventional approaches have been exploited to extract building footprints from high-resolution

remote-sensing images.

2.2. Deep-Learning-Based Building Footprint Extraction Methods

Computational intelligence (ClI) is a biology- and linguistics-driven computational paradigm B4E8l, |n recent years,
deep learning technology, as a main pillar, has been widely used in remote-sensing image interpretation with
powerful layer-by-layer learning and nonlinear fitting capabilities, such as change detection 14, scene classification
(89 semantic segmentation 2%, object detection [4142] etc. In this context, the building footprint extraction method
based on deep learning has attracted the attention of many scholars. The building footprint extraction task can be
treated as a single-objective semantic segmentation task 43l. Therefore, the direct idea is to use a deep learning-
based semantic segmentation network for building footprint extraction, which can fully utilize mainstream deep
neural networks (such as VGGNet 24 ResNet 22 etc.) to mine deep semantic features to recognize buildings. For
example, compared with conventional methods, semantic segmentation networks such as fully convolutional
network (FCN) 8] and U-Net 47 based on VGGNet can achieve a substantial improvement in the performance of
building footprint extraction X2, These methods promote the research of deep-learning-based building footprint
extraction methods. According to this, recently, many deep-learning-based approaches have been proposed for
building footprint extraction from high-resolution remote-sensing images in an end-to-end manner 431, These recent

methods can be broadly reviewed as follows.

As the spatial resolution of images continues to increase, the features of various building styles, such as material,
color, texture, shape, scale, and distribution, have more obvious differences, which makes it difficult to accurately
extract pixel-wise building footprints by using conventional semantic segmentation networks 48, To overcome the
above challenges, many novel networks based on multi-scale and attention structures have been proposed for
building footprint extraction. For example, Ji et al. proposed a Siamese U-Net (SiU-Net) for multi-source building
extraction 22, SjU-Net 23 trains the network by inputting the down-sampled counterparts as the input of another

Siamese branch to enhance the multi-scale perception ability of the network and improve the performance of
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building extraction. In 2 a novel network with an encoder—decoder structure, named building residual refine
network (BRRNet), is devised for building extraction, which introduces a residual refinement module to enlarge the
receptive field of the network, thus improving the performance of building extraction with various scales. Chen et al.
proposed a context feature enhancement network (CFENet) to extract building footprints Y, which builds a spatial
fusion module and focus enhancement module for enhancing multi-scale feature representation. Other similar
networks can be found in B2 |n addition to these networks with multi-scale structures, attention-based networks
have been able to enhance multi-scale feature representation, thus effectively improving building footprint
extraction accuracy. For instance, Guo et al. developed a U-Net with an attention block for building extraction in 52,
In Reference 4 a scene-driven multitask parallel attention convolutional network is promoted for building
extraction from high-resolution remote-sensing images. An attention-gate-based and pyramid network (AGPNet)
with an encoder—decoder structure is designed for building extraction in 22, which is integrated with a grid-based
attention gate and atrous spatial pyramid pooling module to enhance multi-scale features. Other attention-based

building footprint extraction methods are available in [28I758]59]

Recently, some methods have introduced edge information and frequency information to enhance the recognition
ability of buildings 48189 For instance, Zhu et al. proposed an edge-detail network for building extraction 62, which
can consider the edge information of the images to enhance the identification ability to build footprints. In 2, a
multi-task frequency—spatial learning network is promoted for building extraction. Zhao et al. adopted a multi-scale
attention-guided UNet++ with edge constraint to achieve accurate building footprint segmentation in €3l For other
related papers, one can refer to the following studies B4[63l68] | addition, advanced transformer-based networks
have also received attention for building extraction, such as References BZB7IE8] These methods have largely

contributed to the development of building footprint extraction.
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