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Driven by its successes across domains such as computer vision and natural language processing, deep learning
has recently entered the field of biology by aiding in cellular image classification, finding genomic connections, and
advancing drug discovery. In drug discovery and protein engineering, a major goal is to design a molecule that will
perform a useful function as a therapeutic drug. Typically, the focus has been on small molecules, but new

approaches have been developed to apply these same principles of deep learning to biologics, such as antibodies.

antibody antigen machine learning deep learning neural networks
binding prediction protein—protein interaction epitope mapping drug discovery
drug design

| 1. What Is Deep Learning?

Deep learning is a subset of machine learning, concerned with algorithms that are particularly capable of extracting
high level features from raw, low level representations of data. An example of this is an algorithm which extracts
object curvature or depth from raw pixels within an image. Deep learning algorithms generally consist of artificial
neural networks (ANN) with one or more intermediate layers. The intermediate layers of an ANN make the network
“deep” and can be considered responsible for transforming the low-level data into a more abstract high-level
representation. Each layer of the network consists of an arrangement of nodes, or “neurons”, which each take as
input a set of weighted values and transform them into a single output value (usually by summing the weighted
inputs). The resulting values are then passed on to nodes in subsequent layers. The input values for the first layer
are chosen by the practitioner or model architect. In a biochemical context, these features can be hand-crafted
values such as a protein’s volume, or lower-level values such as an amino acid sequence. In a “deep” network, the
outputs of the first layer are passed through one or more intermediate layers before the final output layer which
produces the final result. The intermediate layers allow the network to learn non-linear relationships between inputs
and outputs by extracting successively higher level features and passing them along to subsequent layers (Figure
1).
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Figure 1. A representation of a deep learning neural network. Input layer in blue, output layer in green, and

intermediate layers in yellow.

In order for a neural network to transform an input into a desired output, it must be “trained”. Training a neural
network happens by modification of the weights of the connections between nodes. In a “fully connected” network
each node is connected to each node in subsequent layers. The output values from the nodes of the preceding
layer are passed along weighted connections to the nodes of the subsequent layer. These weights of the
connections are typically initially randomized, and as the network is trained, corrections are made by iteratively
modifying the weights in such a way that the network is more inclined to produce the desired output from the given
input. The correctness of a model is determined by a “cost function”, which provides a numerical measure of the
amount of error in a model’s output. The choice of the cost function largely depends on the task of the network and
functions as a proxy for minimizing or maximizing some metric which cannot be directly used for optimization since
it is non-differentiable, such as classification accuracy. To determine the direction each weight must be changed in
order to come closer to a desired output, the partial derivative of the cost function is computed with respect to the
network’s weights [l. Examples of cost functions include binary cross entropy used for binary classification tasks,
or mean squared error, often used for regression tasks. By repeating this training protocol with many passes over
the entire dataset, the model can be trained to identify and weigh features in the data that are broadly predictive of
the end result. Like other machine learning methods, the use of a training, validation, and testing dataset is used to
assess model performance. The training set is a subset of the data used to reinforce the model to the desired
output, while the validation subset is used to prevent the network from overfitting by terminating training based
upon some criteria computed from the validation set. A common criterion is early stopping, which terminates

training once the performance on the validation set begins to diminish. The test subset, often termed the hold-out
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set, is used to analyze a trained model's generalization capabilities by evaluating the model on unseen data

samples.

Within the past decade, deep learning algorithms have shown super-human capabilities in competitive tasks such
as Go and Chess [, While these methods have benefitted from a virtually infinite number of training examples,
other methods have also seen human-level capabilities using human annotated datasets. Such applications
include image classification and speech recognition where hand-crafted features have been replaced with features
extracted within the internal layers of deep learning models. While the application domain between these methods
is very different from biological, similarities exist between the data representation within these applications and
those of biological data. Biological data is arguably more complex and the capability of these methods to learn rich,

high level features makes them attractive methods for learning patterns within more complex data

1.1. Modeling (Sequence to Structure)

Protein crystal structures have been instrumental in current research surrounding protein—protein interactions,
protein function, and drug development. While the number of experimentally determined protein crystal structures
has grown significantly, it is dwarfed by the amount of sequence data that has been made available . In the last
several decades, the number of known protein sequences has climbed exponentially with the continued
development of sequencing technologies. Due to this disparity, several three-dimensional structure modeling
approaches have been created to bridge the gap between the availability of sequences and the shortage of known
structures.

Current methods of protein structure modeling include homology modeling and ab initio modeling. In homology
modeling, the sequence of the protein is compared to those of proteins with known structures. Closely related
proteins or protein domains are used as structural templates for the corresponding region in the target sequence
[ Ab initio modeling is used in situations where there are not similar sequences for which structures are known or
are otherwise unsuitable for homology modeling. In this case, ab initio algorithms attempt to generate the three-
dimensional structure of the protein using only its sequence. Typically, this is done by sampling known residue
conformations and/or searching for known protein fragments (local protein structure) to use as part of the structure

I3, This is aided by tools like knowledge-based and empirical energy functions to select viable structures.

1.2. Interaction Prediction/Affinity Maturation/Docking

Antibody therapeutics are designed against a target protein. Therefore, it is critical to be able to understand and
infer the binding behavior between the antibody and the target, such as whether or not the two proteins will have
an energetically favorable interaction (interaction prediction), which residues will form the interaction interface and
in what conformation (docking), or how certain amino acid substitutions will change the binding energy (affinity
maturation). Docking algorithms attempt to solve the exact three-dimensional conformational pose between two or
more interacting structures. Software to predict bound complexes of drug candidates has existed as far back as
1982 8. Originally used for small-molecule ligands where current standards include GOLD, DOCK, and AutoDock

Vina, docking algorithms have expanded into the protein—protein domain with current standards including ZDOCK,
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ClusPro, Haddock, RosettaDock and several others [BIEI0 Common to these methods are sampling techniques
such as Monte Carlo or fast-Fourier transform, which aim to generate structural conformations that can be scored
with a function which estimates the energetic favorability of two docked structures 2112l |nteraction prediction
algorithms which classify bound structures based upon energetic favorability can be used to filter candidates and

narrow down the search space.

Another set of algorithms, named affinity maturation after the similar process in B-cell response, attempts to
determine if mutations or modifications to the binding partners have an impact on binding affinity or energetic

favorability or generate mutations or sequences which increase the binding affinity of the partners.
1.3. Target Identification (Epitope Mapping)

Target identification includes methods used to locate binding sites on proteins in the absence of knowledge about
the protein’s binding partner. Since proteins exhibit specificity towards binding partners, this task is considerably
difficult.

Antibody binding sites (epitopes) can be classified into two categories T-cell epitopes and B-cell epitopes. B-cell
epitopes can further be divided into linear and discontinuous 231, While T-cell epitope prediction methods have
seen greater success, B-cell epitope prediction remains a difficult and unsolved problem 14, Despite being

theorized as an unsolvable problem, several methods have been proposed and claim moderate success 12,

| 2. Deep Learning Methods

2.1. Sequence to Structure
2.1.1. Antibody

Efforts to improve antibody modeling have primarily focused on determining the structure of the CDRs from their
sequence alone. Modeling algorithms, such as homology modeling, have been largely successful at determining
the structure of non-H3 CDRs, which mostly fall into canonical structural clusters, determined by length and amino
acid sequences for key residues. Machine learning methods such as Gradient Boosting Machines (GBM) and
Position Specific Scoring Matrices (PSSM), have been used to learn how to group and classify non-H3 CDRs into
structural clusters 18171 The strong structural similarity across sequences within the same canonical cluster
renders modeling of these sequences relatively trivial. Training of these models is done using curated sets of high-

resolution antibody Protein Data Bank (PDB) structures.

The lack of effective modeling approaches and the relative significance of the H3 CDR has led to a number of deep
learning algorithms attempting to structurally model the H3 loop. One of these approaches is DeepH3, developed
by Ruffolo et al. 18, Employing deep residual neural networks, DeepH3 is able to predict inter-residue distances (d,
using Cg atoms and C, for glycines) and inter-residue orientation angles (6, w as dihedral angles and ¢ as a planar

angle) by generating probability distributions between pairs of residues. The purpose of the model is to look at
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hypothetical structures of an H3 loop generated by a modeling algorithm, and rank the structures to identify the
most likely conformation of the H3. The benchmark dataset came from the PylgClassify database (with some
curation, including removal of redundant sequences) and included only H3 s from humans and mice 2. For
training, 1462 structures were taken from the Structural Antibody Database (SAbDab), with 5% of loops randomly

chosen and set aside for validation, to account for overfitting (29],

DeepH3 reports that the Pearson correlation coefficients (r), which simply measures the linear correlation between
two variables (in this case the correlation between predicted and target angles) for d and ¢ were 0.87 and 0.79,
respectively, and the circular correlation coefficients (rc) (a circular analogue of the Pearson correlation coefficient)
for dihedrals w and 6 were 0.52 and 0.88, respectively. DeepH3 was compared to Rosetta Energy and found an
average 0.48 A improvement for the 49 benchmark dataset structures. Furthermore, they were able to show
DeepH3's discrimination score (D, the model’s ability to distinguish between good and bad structures) superiority
over RosettaEnergy with —21.10 and -2.51, respectively. For a case study involving two antibodies and 2800 of
their decoy structures, DeepH3 performed significantly better for one (D = —-28.68, RosettaEnergy D = 3.39) yet
performed slightly worse on the second (D = 0.66 for DeepH3 and D = -1.59 for RosettaEnergy).

2.1.2. Protein
AlphaFold

As one might expect, the majority of deep learning approaches for modeling biomolecules have been focused not
just on antibodies, but on proteins more generally—primarily in the field of protein fold prediction, which seeks to
generate structures from proteins’ amino acid sequences. One such method is AlphaFold, where a protein-specific
potential is created by using structures from the PDB to train a neural network to predict the distances between
residues’ Cg atoms (211 After an initial prediction, the potential is minimized using a gradient-descent algorithm to
achieve the most accurate predictions. AlphaFold uses a dataset of structures extracted from the PDB, filtered
using CATH (Class Architecture Topology Homology Superfamily database) 35% sequence similarity cluster
representatives, yielding 29,427 training and 1820 test structures. When benchmarked against the Ciritical
Assessment of Protein Structure Prediction (CASP13) dataset, AlphaFold performed best out of all groups,
generating high accuracy structures for 24 out of the 43 “free modeling domains”, or domains where no

homologous structure is available.

One drawback of the AlphaFold method is the requirement of a multiple sequence alignment which may vary in

usefulness across proteins.

Recurrent Geometric Network

A deep learning method which requires only an amino acid sequence and directly outputs the 3D structure was
presented by AlQuraishi 22, In this work, a recurrent neural network is utilized to predict the three torsion angles of
the protein backbone. AlQuraishi breaks his method, a recurrent geometric network (RGN), into three steps. In the

first step, the computational units of the RGN transform the input sequence into three numbers representing the
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dihedral, or torsion, angles of each residue along with information about residues encoded in adjacent
computational units. This computation is done once forward and then once backward across the sequence,

allowing for the model to create an implicit representation of the entire protein structure.

The three computed torsion angles are then used in the second step to construct the entire structure one residue at
the time. In the final stage, the generated structures are scrutinized by comparing them to the native structure. The
score used is a distance-based root-mean squared deviation (dRMSD), which allows for utilization of

backpropagation in order to optimize the model.

All available sequence and structure data prior to the CASP11 competition was used for training (with a small
subset reserved for validation and optimization) and structures used during the actual competition were used for
testing the RGN. Results from free modeling (FM, novel proteins) and template-based modeling (TBM, structures
with known homologs in the PDB) structures were reported and compared to results of all server (automated)
groups from the CASP11 assessment. The RGN outperformed all groups when comparing dRMSD values and was
jointly the best when looking at the TM-score in the FM category. For TBM, it does not beat any of the top five
groups but lands in the top 25% quantile for dARMSD. These results can be explained by the following advantages
and disadvantages: the model is optimized using dRMSD, never sees TM-score during training, and is not allowed

to use template-based modeling like the other groups.

Interesting to note is the propagation of solved torsion angles across the sequence from the upstream and
downstream calculations of the recurrent neural network. Since the structures of antibody framework regions and
non-H3 CDR loops can be modelled relatively easily due to their common canonical structures, the solved torsion
angles for the residues which make up these regions could easily be propagated across the residues of the H3
loop during the first stage of the aforementioned method. The minor changes required to implement these

modifications make this an attractive framework for H3 modeling.
Transform-restrained Rosetta (trRosetta)

Another method for predicting inter-residue orientations and distances uses a deep residual convolutional neural
network. Transform-restrained Rosetta (trRosetta) uses the input sequence and a multiple sequence alignment in
order to output predicted structural features, which are given to a Rosetta building protocol to come up with a final
structure 23, The network learns probability distributions from a PDB dataset, and extends this learning to
orientation features (dihedral angles between residues). After high-resolution checks, a 30% sequence identity cut-
off, and other requirements—such as sequence length and sequence homology—a total of 15,051 protein chains
were collected and used for training. The network was tested using 31 free modeling targets from CASP13 and
compared to the top groups from the modeling assessment. TrRosetta had an average TM-score of 0.625, beating
the top server group (0.491) and the top human group (0.587). Further validation was done using 131 “hard” and
66 “very hard” targets from the Continuous Automated Model EvaluatiOn (CAMEO). For the “hard” set, the reported
TM-score (0.621) was 8.9% higher than Rosetta and 24.7% higher than HHpredB, the top two groups. The “very
hard” set was taken from the 131 targets that had scored less than 0.5 by HHpredB. These structures received an

average TM-score of 0.534, 22% higher than Rosetta and 63.8% higher than HHpredB. The trRosetta group notes
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that, unlike the other teams from the challenge, trRosetta’s tests were not performed blindly and they plan to
confirm these improvements in a future protein assessment challenge. Finally, the group looked at the network’s
performance on 18 de novo designed proteins and found that their method is considerably more accurate at

predicting designed protein structures than structures of natural proteins.
2.2. Interaction Prediction/Affinity Maturation
2.2.1. Deep Learning Used for Antibody Lead Optimization

A successful application of deep learning within the domain of interaction prediction comes from a sequence-based
approach proposed to optimize an existing antibody candidate by Mason et al. 24, Rather than using a public
domain dataset, the authors generate a relatively small number of variants (5 x 10% of an existing therapeutic
antibody by introducing mutations to the H3 regions of the CDR and screening the variants for binding against a
target antigen. The H3 sequences, labeled as binding or non-binding, were used as input to long-term-short-term
recurrent neural networks and convolutional neural networks which were trained to predict the binding label of the
sequences. Trained networks were then used to filter a computationally generated set of 7.2 x 10 candidate
sequences to 3.1 x 10° predicted binders. Experimental testing showed that 30 out of 30 randomly selected
predicted binding sequences bound specifically to the target antigen, with one of the thirty exhibiting a three-fold

increase in affinity.

The significance of this method is highlighted by the comparative analysis with a structure-based approach. The
authors demonstrate that the number of new binding sequence suggestions generated by the structural modeling
software is orders of magnitude smaller than the actual expected binding sequence space and that the free energy

estimation of the modelled structures could not be used as a reliable classifier of binding activity.

While structure-based methods have the potential to represent richer features for a given input, sequence-based
methods benefit from more data availability due to developed experimental methods such as next-generation

sequencing.

2.2.2. Ens-Grad

Another sequence optimization algorithm, Ens-Grad, uses an ensemble of neural networks and gradient ascent to
optimize an H3 seed sequence [22. Briefly, Liu et al. report training an ensemble of six neural networks (five
convolutional) using experimental phage display data generated from panning experiments. Panning experiments
approximate enrichment in binding affinity by subjecting a set of H3 sequences bound to phages to a binding
competition where non-binders are washed away and binders are kept for subsequent rounds 28, Several different
models with varying architectures were trained using either a means squared error loss for regression of
enrichment, or a binary cross entropy for classification of H3 CDRs that were successively enriched in rounds of

panning.
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After fitting the ensemble of neural networks, the authors use gradient ascent to optimize input seed sequences.
Contrary to gradient descent, which is generally used to modify neural network weights so as to minimize a loss
function such as classification error, gradient ascent is used in this case to modify the input sequence so as to
maximize the output. The authors suggest that the use of an ensemble of several neural networks allows for

optimization to take controlled paths by optimizing with respect to different network outputs.

Using this optimization protocol, the authors were able to generate sequences with greater enrichment than both
seed sequences and sequences within the training dataset. This significant result suggests that the neural network
models were able to extrapolate beyond input training data, possibly by learning high level representations of what

determines enriched binding.

Additionally, the authors demonstrate superior performance using a gradient ascent method compared to more
common generative models such as variational auto-encoders and genetic algorithms. However, it is unclear
whether or not the difference between these methods is attributable to the style of optimization, or to the difference

in the architecture of the network (e.g., number of layers or layer sizes).

Similar to the method developed by Mason et al. 24, this method completely circumvents the need for structural
data which is significantly more difficult to acquire. However, it is highly unlikely that these methods generalize well
across target antigens. In each method the network is fit to data points derived from a single target antigen and
therefore applying this method to a different target would require extensive wet-lab testing to generate the training

data and refit the model.
2.2.3. Deeplinterface

Deeplnterface is a structure-based method which aims to classify protein complexes in their docked conformational
state as either true or false binders [27. The input to the network is a voxel grid constructed from a fixed-size box
placed around the interface. To handle rotation ambiguity, the authors align the vector between the structures
center of mass to one of the three coordinate axes. The network itself is composed of four convolutional layers
followed by batch normalization and rectified linear units. To transform the voxel space into a one-dimensional
vector and subsequently into a prediction of binding, global average pooling is applied to the voxel space followed

by two fully connected layers.

Of note here is the generation of negative data used to train the network. Negative examples in this case refer to
any structures which are not true binders. Using negative examples is a vital step in classification, as the network
must be exposed to some form of negative input for successful training. To generate these negative examples, the
authors use a fast-Fourier transform (FFT)-based docking algorithm, ZDOCK, to select incorrect docking solutions

from the set of sampled conformations 4.

Representation of the protein interface as a voxel grid is an intuitive yet problematic strategy. Firstly, the input size
of the network restricts the voxel space to a single size. The authors overcome this by limiting the size of the

interfaces passed into the network to those small enough to fit into the bounded grid space. Secondly, a rotational
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ambiguity problem arises due to the absence of a common axis across all interfaces. Similar voxel methods used
for 3D objects can usually take advantage of an implied gravity vector to eliminate ambiguity across an axis.
Handling ambiguity between the remaining axes can be done using a randomly rotated version of the input or by
implementing rotational pooling into the network architecture. However, these methods are impractical for more
than two dimensions as the number of possible rotations needed grows exponentially. Despite these limitations,
Deeplinterface achieves 75% classification accuracy on benchmark datasets, demonstrating viability in this

classification task

Due to the differences previously mentioned between antibody-antigen interfaces and general PPls, it is not clear
that the model here presented would be capable of avoiding false positive classification. This problem may give
rise to out-of-distribution errors, which arise when the underlying training dataset is not representative of its real-
world use case. However, except for the bounding voxel space size, the model architecture and input structure
presented within Deeplnterface is somewhat agnostic to the type of interface evaluated. It should be noted,
however, that the model’s reliance on spatial arrangement of the interface area should not hinder its applicability

towards antibody—antigen interfaces, which possess non-discernable differences in shape complementarity 28],
2.2.4. MaSIF-Search

The MaSIF approach comes out of the growing field of geometric deep learning. Starting from a mesh
representation of a protein surface, a patch is created by selecting a point on the mesh and all neighboring surface
points within a defined geodesic distance 29. Each of the surface points is annotated with geometric and chemical
features which describe degrees of curvature, concavity, electrostatic potential, hydrophobicity and hydrogen bond
potential. The patch is down-sampled into a grid of 80 bins (5 radial x 16 angular). Each bin contains the statistical
mean of the feature attributes of the points which are assigned to the corresponding bin. The 80 bins, indexed by
polar and angular coordinates, are passed as input into a set of geodesic convolutional filters to generate a one-
dimensional descriptor of the protein surface. Rotational max-pooling is used to overcome angular ambiguity. The
one-dimensional descriptor is then refined by a fully connected layer. The remaining architecture is regarded as
application-specific, which expresses the ability to use the 1D descriptors as input into an application specific

model.

To train an application specific model for interaction prediction, a modified version of the triplet loss function is
used, which minimizes the Euclidean distance between the 1D descriptors of an anchor (a binding protein patch)
and a positive (a complimentary patch to the anchor), and maximizes the distance between the anchor and a
negative (a randomly chosen, non-complementary surface patch to the anchor). The authors deem two surface
patches from two separate proteins to be positive pairs if the patch centers are within a small distance from one

another at the protein—protein interface.

To measure the model’s performance, the authors classify interacting vs. non-interacting pairs and report an area
under the curve of the receiver operating characteristic (ROC AUC) of 0.99 when using geometric and chemical
features. The authors further evaluate the model’s performance on different subsets of the data by creating subsets

of low, high and very high interface complementarity. It is interesting to note that, as expected, the classification
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performance of the model drops to 0.81 ROC AUC using both geometric and chemical feature sets on the low
shape complementary subset and further to 0.73 and 0.75 when using only the geometric and chemical features on

this subset, respectively.

MaSIF search is trained on a mix of antibody—antigen and protein—protein interfaces with no distinction between
the two. As mentioned previously, antibody—antigen interactions exhibit a similar shape complementarity to that of
other protein—protein interfaces (28, This observation provides evidence to suggest similar expectations as those
arrived in the investigation of Deeplinterface, which is that models capable of capturing geometric matching across

protein—protein interfaces should extrapolate well to antibody—antigen interfaces in this regard.

Other machine learning methods, not strictly considered to be deep learning methods, further reinforce this point.
As an example, a graph-based machine learning approach called mutation Cutoff Scanning Matrix (mCSM) which
predicts changes in affinity upon mutation was developed and evaluated separately on protein—protein and
antibody—antigen mutations B9, The model fit to a protein—protein mutation dataset, mCSM-PPI, performs
significantly worse (Pearson coefficient of 0.35) than the model specialized for antibody—antigen interactions

(Pearson coefficient of 0.53).
2.2.5. TopNetTree

The need to treat antibody—antigen interfaces as special cases of protein—protein interfaces is further reinforced by

the analysis of a deep learning method termed TopNetTree (211,

TopNetTree is a recent, innovative approach that uses techniques from persistent homology as a means to
represent protein structures as a set of one-dimensional features. Specifically, the use of element-specific
persistent homology allows the topological features to be specific to chemical and compositional properties, as well
as to atoms within (or a certain distance away) from the mutation site. Using these methods, one-dimensional
barcodes are extracted which represent pairwise atomic interactions, the existence of cavities and other multi-atom
structures such as loops. Along with the topological features, several other features are included, including solvent

accessible surface area, partial charge, and electrostatic solvation free energy.

Mutations are encoded by concatenating the features generated from the native and mutated structure. The first
level barcodes, which represent the pairwise atomic interactions, are used as input to a convolutional neural
network with four convolutional layers and one dropout layer. The network is trained to minimize the mean-squared
error between the final output and AAG. After initial fitting, the output logits of the final convolutional layer are fed
into a set of gradient-boosted trees to rank the importance of the convolutional features. The most important
features are combined with the higher level topological features as input to a final set of gradient-boosted trees to

obtain a final prediction for AAG.

When trained on a subset of the SKEMPI2 database excluding antibody—antigen complexes, and tested on a set of
787 mutations within antibody—antigen interfaces, TopNetTree achieves an R, of 0.53 and a root mean squared

error (RMSE) of 1.45 kcal mol™ B2, When performing 10-fold cross validation on the aforementioned training set,
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which contains only protein—protein interfaces, the authors report an R, 0.82 and an RMSE of 1.11 kcal mol™L.
When compared with other predictors of change in affinity upon mutation, TopNetTree exhibits state-of-the-art
results for both general protein—protein interfaces as well antibody—antigen interfaces. The performance difference
seen between the predictability of AAG in protein—protein and antibody—antigen mutations highlights the need to

treat antibody—antigen interfaces as separate and special conditions.
2.3. Target Identification
2.3.1. Antibody Specific B-Cell Epitope Predictions

Similar to interaction prediction methods, target identification methods can be separated into two primary classes
based upon the input used: structural or sequential. The first of these that we review here is a structural method
which demonstrates the increased challenge of predicting interacting domains on an antigen surface without
information about the interacting antibody paratope B2l In this work by Jespersen et al., to formulate a one-
dimensional input vector which can be fed into a fully-connected neural network layer, the authors start by defining
a patch as a residue and all of its surface-exposed neighbors within a 6 A proximity. To represent the geometric
properties of the patch, the authors use the first three principle components of the C, atoms and Zernike moments.
Zernike moments are a particularly noteworthy feature in this work as they function similar to filters of a
convolutional neural network by deconvoluting the underlying patch into scalar values representing degrees of
particular shapes and patterns found within the patch. Along with these geometric features, compositional features

such as solvent exposure and amino acid composition statistics are included.

For training data, the authors construct a negative patch by randomly selecting a non-epitope residue and
generating a patch through a Monte Carlo method which iteratively adds neighboring residues to, and removes
neighboring residues from, the patch. Target values for patches fall between 0 and 1 and are determined by the
amount of residue overlap with a known true epitope. Similarly, negative paratope—epitope patch pairs are

generated by matching epitopes to paratopes from different antibody—antigen clusters.

Three models are used: a full model, a minimal model, and an antigen model—each possessing two hidden layers
and a sigmoid activation function, and differing only by the size of the input layer. The full and minimal models use
patch features from both epitope and paratope and are trained to score pairings while the antigen model uses only
epitope features and is trained to score only epitopes. The minimal model, in contrast to the full model, excludes

the Zernike moments’ complex structural features.

To compare the three models, the authors construct a test set of 300 negative samples using the aforementioned
protocols for each true epitope or epitope/paratope pair across eight different antibody/antigen clusters. Model
scores are used to rank the 301 clusters and a F,4, Score is determined as the percentage of negative samples
ranked higher than the positive. Reported scores are 7.4%, 10.9% and 15% for the full, minimal and antigen
models, respectively. These results clearly demonstrate the difference in feasibility between predicting epitopes
with and without information of a candidate antibody. Although the exclusion of the Zernike moments cannot be

directly attributed to the decrease in performance between the full and minimal set (due to inclusion of other
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features in the difference set), the results do provide evidence that deconvoluting surface patches into a
composition of simpler patterns—as is often seen in convolutional neural networks—may be a powerful tool when

working with structural data.
2.3.2. MaSIF-Site

As discussed previously, one such method does in fact take the aforementioned approach of surface
deconvolution. Namely, the MaSIF approach, which aims to generate one-dimensional fingerprints from surface
patches using geodesic convolutional layers 29, An overview of the MaSIF method is given above in the
Interaction Prediction Section 5.2.4. As previously mentioned, these fingerprints can be fed into application specific
layers. MaSlIF-site is one such application. In contrast to MaSIF-search, the authors report experiments with

different network depths by stacking layers of either two or three geodesic convolutional filters.

Moreover, in contrast to MaSIF-search, the authors do not provide experimental results of performance under
geometric and chemical subsets. However, the reported ROC AUC of the model’'s classification performance for
predicting interacting vs. non-interacting patches is 0.87 ROC AUC per protein. The authors also present more
granular results from evaluating the model’s classification performance on proteins with large hydrophobic patches
versus proteins with those with smaller hydrophobic patches. The reported performance is 0.87 for large
hydrophobic and 0.81 for smaller hydrophobic patches. This is significant in the context of epitopes, as antibody—
antigen interfaces tend to have fewer hydrophobic interactions than general protein—protein interfaces. However,
the model showed satisfactory results in distinguishing a wild-type, non-antigenic protein patch from a mutated

version which has a known antibody binder, suggesting its applicability for identifying epitopes.

2.3.3. Linear B-Cell Epitopes

While it is estimated that approximately 90% of B-cell epitopes are conformational, a significant amount of attention
has been placed on predicting linear B-cell epitopes 141 The first neural network model used for predicting linear B-
cell epitopes was established by Saha et al. 34, Using a relatively standard recurrent neural network architecture
which takes as input an amino acid sequence, Saha et al. report prediction accuracies of 65.93% in classifying
linear epitope residues from randomly selected and, presumably, non-epitope residues despite a relatively small

training set of 700 sequences.

Another straight-forward architecture for linear B-cell prediction uses a fixed size 20 length sequence as input to a
fully-connected architecture with two hidden layers and a final softmax output which ultimately transforms the input
sequence to a probability score between 0 and 1. As is the case in other applications, it is difficult to compare this
model directly with those previously mentioned due to the use of differing datasets. The reported classification

accuracy of 68.33% does, however, suggest improvements.

A better comparison of these methods with one another and other non-deep learning epitope predictors was
carried out along with the introduction of an additional deep learning model termed a deep ridge regressed epitope

predictor (DRREP) developed by Sher et al. (Table 1) 22, Briefly, the initial layer of the model uses a randomized
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set of k-mers which are slid across the input sequence and used to compute a matching score with each k-mer and

subsequences of the entire input sequence. The inclusion of a second pooling layer renders this procedure similar

to a convolution step where the filters are preset to the randomized k-mers. Contrary to what is most commonly

implemented in neural network training, the weights of the third layer (a fully connected layer) are computed

analytically using ridge-regression. Finally, an output layer is used to provide residue-level predictions of each

residue in the sequence.

Table 1. Comparison of several linear B-cell epitope predictors across five different datasets. Results taken from

[35],
DataSet
SARS
HIV
Pellequer
AntiJen

Tot Residues
193

2706

2541

66319

Epitope%

63.3

37.1

37.6

14

System
DRREP

BCPred
ABCPred
Epitopia
CBTOPE
LBtope
DMN-LBE
DRREP
BepiPred
ABCPred
CBTOPE
LBtope
DMN-LBE
DRREP
LBtope
DMN-LBE
DRREP
LBtope

DMN-LBE

75spec
86.0

80.3
67.9
67.2
75.6
65.8
590.1

61.4

61.2
60.4
61.2
63.6
62.7
60.9
62.8
73.0

74.2

AUC
0.862

0.648

0.644

0.602

0.758

0.561

0.683

0.60

0.55

0.506

0.627

0.63

0.629

0.62

0.61

0.702

0.702

https://encyclopedia.pub/entry/17278

13/16



Deep Learning Methods for Antibodies | Encyclopedia.pub

DataSet Tot Residues Epitope% System 75spec AUC
SEQ194 128180 6.6 DRREP 75.9 0.732
Epitopia _ 0.59
BEST10 B 0.57
BEST16 _ 0.57
ABCPred _ 0.55
CBTOPE _ 0.52
owcases
Ozl - O oredictors
LBtope 75.3 0.71
DMN-LBE B B
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