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Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses

a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The

photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells.

photodynamic therapy (PDT)

1. Introduction

Cancer is one of the most frequently occurring diseases and, apart from heart and circulatory system disease, is

the greatest threat to health worldwide. It is estimated that, in 2020, almost 20 million cancer cases were reported.

Statistically, mortality from malignant neoplasms is about 50%. Today, 30–50% of cancer cases are preventable by

reducing risk factors and implementing preventive strategies. The cancer burden can also be reduced through

early detection and the appropriate treatment and care of patients who develop cancer. Many cancers have a good

chance of being cured if they are diagnosed early and properly treated .

The methods of cancer treatment used currently in oncology, such as chemotherapy and radiotherapy, lead to

numerous complications related to damage of healthy tissues. Patients often experience local recurrence of the

disease or develop secondary tumors via metastases. An inability to selectively act on neoplastic tissue motivates

the search for new, more effective methods of treatment of this dangerous disease.

More than 100 years have passed since the discovery and description of photodynamic therapy (PDT). PDT has

received widespread interest in recent years as a non-invasive and highly selective approach to cancer treatment.

The basis of PDT is to introduce an appropriate photosensitizer (PS) that accumulates in the tumor tissue or local

vasculature and then illuminate it with light. The essence of PDT is the destruction of neoplastic cells by reaction

with reactive oxygen species such as singlet oxygen or hydroxyl radicals that are generated by photodynamic

action. PDT for the treatment of cancer and precancerous conditions it is an alternative treatment but may be used,

and usually is, in combination with the other treatment options to traditional methods of treatment (Figure 1).
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Figure 1. Mechanisms of action of PDT such as inducing immune responses, damaging vascular structures and

direct killing of tumor cells. PS’s generate ROS only after exposure to specific light and light activation in the

presence of oxygen. Generated ROS mainly cause effector functions (e.g., killing cancer cells, inducing immune

responses, damaging vascular structures and direct killing of tumor cells). Following light absorption, the PS

reaches an excited singlet state. After an intersystem crossing, the PS, now in a triplet excited state, can react in

two ways: react with biomolecules through a hydrogen atom (electron) transfer to form radicals, which react with

molecular oxygen to generate ROS (Type I reaction), or the PS in its triplet state can react directly with oxygen

through energy transfer, generating singlet oxygen (Type II reaction).

PDT requires the presence of three basic ingredients. The first component is the presence of PS, i.e., a light-

sensitive compound that is delivered to neoplastic tissue. The second is the presence of oxygen (O ) dissolved in

the tissues, and the third necessary component is the selection of a light source with an appropriate wavelength

adapted to the absorption spectrum of a given photosensitizer .

The presence of three basic ingredients (PS, O   and light) leads to tumor necrosis . PDT is approved for

treatment of neoplastic diseases such as bladder cancer , skin cancer , lung cancer , gastrointestinal

tract cancers , and cancers of the oral cavity . There are also studies on the use of PDT for breast

cancer treatment . To date, PDT has been used successfully in dermatology, gynecology and urology .

Historically, Tappeiner and Jesionek were the first to successfully treat skin cancer with eosin in combination with

white light. Soon after, Figge demonstrated that hemoporphyrin (HP) has tumor localization properties; Lipson and

colleagues initiated PDT in clinical use in the 1960s in the USA .
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Hematoporphyrin gave rise to the first generation of compounds used as PS in PDT. Currently, second-generation

compounds are also used, including synthetic photosensitizers (porphyrin and porphyrin-like compounds). Third-

generation drugs combine the high efficiency of the second-generation compounds with greater affinity for tumors,

which results in reduced damage to surrounding tissues.

Over the years, many compounds that possess photosensitizing properties have been discovered or synthesized.

The search is still ongoing on for photosensitizers that selectively accumulate in neoplastic tissues and do not

cause side effects after therapy, e.g., cytotoxicity or mutagenicity. Scientists synthesize new photosensitizers with

better biological properties and with absorption in the near infrared (the optimal spectral range for light penetration

into tissue) that accumulate in neoplastic tissue and have high quantum yields of reactive oxygen species (ROS).

The redox balance is maintained in cancer cells due to their marked antioxidant capacity.

2. Photochemical Reactions in Photodynamic Therapy

A PS is introduced into the patient’s body (intravenously or locally, e.g., on the skin) which accumulates in cancer

cells. After a certain period of time, the photosensitizer reaches its maximum concentration in the tumor in relation

to the surrounding healthy tissue. After this time, the area is exposed to radiation of wavelength corresponding to

the absorption of the PS. The light source must be chosen so that the emission bandwidth of the light source

coincides with the PS band absorption necessary for photochemical reaction .

As a result of photon absorption, the photosensitizer molecule is excited from the singlet ground state to the

excited singlet state. From the point of view of PDT or photodynamic diagnosis (PDD), there are two deactivation

pathways that are of importance. The first is transferring excess energy to the environment through the

fluorescence process. In PDD, fluorescence detection of a cumulative drug in neoplastic tissue allows for a precise

diagnosis with the determination of the shape, size and location of the neoplastic lesion.

The second pathway is intersystem crossing from the exited singlet state to the triplet state. The lifetime of a

photosensitizer molecule in the triplet state is sufficiently long to interact with oxygen. Molecular oxygen in the

ground state is a triplet and in the process of energy capture it effectively deactivates the triplet state of the PS, in

turn generating a strong oxidant known as singlet oxygen .

The literature describes in detail two mechanisms (Type I and Type II) of the photodynamic effect (Figure 2).
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Figure 2. Type I and Type II photosensitized reactions. * Excited state of sens.

Type I photosensitized reactions involve electron transfer and lead to the initial formation of radicals and the

participation of O  in subsequent steps involved in the oxidation process. Additionally, the Type I mechanism can

occur when the environment is hypoxic. The photooxidation reaction leads to the formation of free radicals in tumor

tissue. In the type I mechanism, an electron or a hydrogen atom is transferred between the molecule of the excited

dye and the neoplastic tissue in which the photochemical reaction takes place. As a result of these reactions, a

radical anion or substrate radical is formed.

On the other hand, the type II mechanism involves an initial energy transfer from the triplet excited state of the

sensitizer to dissolved O , which is in its ground triplet state.

The Type II mechanism is the dominant mechanism for the destruction of neoplastic tissue. Singlet oxygen ( O ,

refers to the  Δ state) is the predominant type II reactive oxygen species that is able to react with nucleic acids

(exclusively guanine), unsaturated lipids and amino acids such as Trp, His and Met. Biological  O  reactions often

lead to endoperoxides from [2 + 4] cycloadditions, dioxetanes from [2 + 2] cycloadditions, hydroperoxides from

“ene” reactions or phenol oxidations, and sulfoxides from sulfides .

Excited singlet oxygen is the result of energy transfer from the triplet form of the photosensitizer molecule to the

oxygen molecule. Energy transfer is allowed, and the dye molecule returns to its ground state . Ideal

sensitizer properties and conditions for PDT can lead to cell death in three ways, i.e., apoptosis, necrosis, and

autophagy. The response to PDT may differ according to the cell type, its genetic or metabolic potential, and PS

intracellular location. The tumor site treated with PDT may initially determine which cell death pathway will be

activated. In the beginning, a rescue mechanism is triggered, possibly the process of autophagy. On the other

hand, when the PDT damage is sufficiently strong (the concentration of the PS is lower and the incubation time is

longer), the cells cannot be repaired and the apoptosis mechanism is activated. If cell damage by PDT is too high

(high concentration of photosensitizer and a short incubation time), then it may also lead to necrosis. In this

process, proteins involved in both autophagy and apoptosis can be destroyed immediately, and cellular integrity

can be broken .

The EPR (electron paramagnetic resonance) also known as electron magnetic resonance (EMR) or electron spin

resonance (ESR), is often used as the “gold standard” in the biological, chemical, and medical systems to detect

and characterize radicals. EPR is based on the principle of the absorption of electromagnetic radiation by using

electrons with unpaired spins falling under a magnetic field to transition from low to high energy levels, which can

be designated as a −1/2 and +1/2, respectively .

3. The Role of Photosensitizers in PDT

Plant species that are considered toxic are often a source of pharmaceutically active compounds that are some of

our drugs and are isolated from plants. Due to the presence of chromophores, they easily absorb light and
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fluoresce in blue–yellow under long-wave ultraviolet light. These compounds can be produced by the plant as a

protective mechanism against a large dose of sunlight, which is why they are often placed in sunscreen and

cosmetics for this purpose. Psoralens are typical of the citrus and celery families. Some plants belonging to these

groups are known as bladder bushes because the psoralens they contain are known to be phototoxic. This can

prove difficult for farmers who remove large amounts of giant hogweed and come into contact with the sap of a

psoralen-rich plant, and in the presence of sunlight can cause inflammation and, in severe cases, blistering of the

skin. Other species known to be phototoxic are borscht, rue and some Citruss spp. A number of culinary-relevant

apiaceus herbs, such as celery, parsley, parsnips and angelica, may even be phototoxic due to the presence of

furanocoumarins. Psoralens, e.g., form adducts with DNA pyrimidine bases such as thymine via cycloaddition.

Many plants contain photoactive chemicals and have been identified as phototoxic plants that have the ability to

cause skin reactions in humans or animals when they come into contact with the skin followed by exposure to the

sun.

As early as 1942, Klaber  observed sunburn in people exposed to sunlight. They then studied many phototoxic

plants or phototoxic phytochemicals that, when exposed to sunlight, were susceptible to phototoxic and

photogenotoxic skin effects, such as skin irritation, sensitization, allergy, mutations and skin cancers. Photoxins

can be found in many different plant families (Table 1), and it follows that the vast majority of phototoxins in the

plant kingdom are not related.

Table 1. Examples of photototoxic plant species and their reported some phototoxins.

Common Name Plant Species Phototoxin(s) References

Ammi majus L. Bishop’s weed
e.g., Xanthotoxin,

bergapten, oxypeucedanin

Ammi visnaga (L.) Apiaceae
e.g., Xanthotoxin;

8-hydroxybergapten; imperatorin

Pastinaca sativa Wild parsnip e.g., Xanthotoxin; bergapten; imperatorin

Cymopterus watsonii Apiaceae e.g., Xanthotoxin; bergapten

Cullen cinereum Hoary Scurf-pea e.g., Psoralen

Ruta graveolens L. Rua e.g., Psoralen; bergapten; isorutarin

Photosensitizers accumulate in cancer cells and, to a lesser extent, in healthy tissues. The effectiveness of PDT

largely depends on the properties of the photosensitizer used. A lot of research is carried out to synthesize and

optimize the physicochemical properties of photoactive compounds. Often, new photosensitizers of natural origin,

e.g., from plants, are obtained. In order for a PS to be used in the diagnosis or treatment of neoplastic diseases, it

must meet several conditions .
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The PS should selectively accumulate in neoplastic tissue;

The PS should preferably be readily available, in the form of a pure compound, and its chemical properties must

be carefully established beforehand;

The PS should not have phototoxic effects in healthy tissue;

The PS should be characterized by a high coefficient of absorption in the spectral range of 600–800 nm, with

maximum light penetration through the tissue;

The absorption bands of the photosensitizer must not overlap the absorption bands of endogenous dyes such

as melanin or hemoglobin and the water absorption bands in the near infrared region;

The PS should react efficiently with light to generate singlet oxygen or radicals;

The PS and these photoproducts should be characterized by optimal pharmacokinetic properties;

The PS should have few side effects;

The PS should be of low toxicity and easily excreted from the body to avoid phototoxicity after treatment.

Many dyes, both known and newly synthesized, have been tested for utility in PDT. The requirements that must be

met by PS are high and therefore no dye has been discovered that satisfies all of the above criteria . Most PS’s

and PS’s photoproducts used in PDT anti-cancer therapy are porphyrin compounds or their derivatives.

3.1. Naturally Occurring Photosensitizers in PDT

Since ancient times, herbal medicine from natural products has been utilized for treating various human ailments.

Most current medicines are derived from various medicinal plants, and it is evident that herbal extracts and their

compounds should be examined as possible active lead components in cancer drug discoveries. Nature is a

valuable reserve for medicinal plants, and many of the pharmaceutically active compounds isolated from medicinal

plants have not been tested for photoactive properties. There have been few studies attempting to identify new

chemical compounds with photoactivity from plant extracts that can be used as potent natural PSs and in order to

achieve the bioavailability and cytotoxicity induction, the drugs are administrated in high concentrations.

Current analytical methods allow for the extraction, purification, determination of the chemical structure, as well as

the determination of the pharmacology of active ingredients obtained from natural materials. The natural products

are a very useful source for the development of drugs and discovery of new photosensitizers . Nature hides a

huge amount of pharmaceutically active compounds, some of which are described in the scientific literature.

In recent decades, numerous efforts have been made to isolate new products of natural origin from microbes,

plants and other living organisms. Their pharmacological properties are studied, and their anti-cancer properties

are assessed. The efforts made have led to the discovery of a number of anti-cancer drugs. It is estimated that in

the years 1981–2019, approximately 25% of all newly registered anticancer drugs were derived from natural

products .

In a 2019 review published by Hamblin et al., it is presented that about 400 individual compounds have been

recognized as possible candidates for use as PSs .

[43]

[44][45]

[46][47]

[27]



Natural Photosensitizers in Photodynamic Therapy | Encyclopedia.pub

https://encyclopedia.pub/entry/20027 7/26

In a 2020 review published by Muniyandi et al., more than 300 chemical compounds have already been identified

as potential candidates to be used as PSs and the largest group about 700 of anthraquinones possess photoactive

properties .

In natural extracts, researchers have found new active chemical compounds that display efficient PS properties 

. Jong et al. presented the results of screening 2400 extracts from 888 plants for their photosensitizing

activity. The study looked at terrestrial plants in the Sarawak forests of Borneo with the goal of finding new

photosensitizers for PDT . In 2014, a group of researchers examined the phototoxic properties of 278 extracts.

Finally, they described two new PS that showed activity in PDT. Finally, they identified two new photosensitizers

with cyclic tetrapyrrole structures . In other studies, the hydrophobic extract of the Arrabidaea chica (Crajiru)

plant was presented as a rich collection of PS that could be used in PDT . In 2017, three extracts were tested

with the use of MCF-7 breast adenocarcinoma cells for their potential as a source of PS’s in PDT. Photoactivated L.

racemosa and A. procera extracts were found to be more cytotoxic to MCF-7 than the non-tumor human neonatal

skin fibroblast lineage .

The above examples and Figure 3 show how important it is to study extracts from various plants for the detection

of new PS’s that can be used in PDT.

Figure 3. The numbers of publications regarding natural compounds used in PDT.

Several PSs were approved for clinical applications or under clinical trials, e.g., Photogem , Photodithazine ,

and Photosan . PDT, through the use of PS’s that allow them to interact with many cell receptors and induce cell

death, can be used in the treatment of bacterial and viral diseases, autoimmune diseases, and cancer. The

antimicrobial PDT has been known for over 30 years and has proven effective against a wide variety of bacteria.
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Advances in PDT development confirm that it has the ability to kill bacteria, fungi and viruses. ROS generated by

the PDT process can deactivate several classes of microbial cells, including Gram-negative bacteria such as

Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains

endotoxins and blocks antibiotics, dyes and detergents, protecting the sensitive inner membrane and wall cellular

. PDT can be used in infections that do not respond well to antibiotic therapy. There are several features of PDT

that make it potentially ideal for treating diabetic feet. The photosensitizer is non-toxic in the dark, but becomes a

very effective topical antimicrobial agent when irradiated . PDT was also effective in seventy-seven non-smoking

periodontitis patients for acting PDT as an adjuvant treatment. PDT has a positive effect in significantly reducing

the periodontal microbial load . The anti-inflammatory and antibacterial action were possible due to the effect of

toothpaste containing Polish propolis and plant oils on oral cavity health in patients with oral cleft treated

orthodontically .

The chemical formulas of natural photoactive compounds described in the work are presented in  Figure 4  and

in Figure 5.

Figure 4. Chemical formulas of the most common photoactive natural PS’s discussed.
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Figure 5. The chemical formulas of the most common photoactive natural PS’s discussed.

3.1.1. Pheophorbide A

For example,  phototrophs  are able to capture the energy in light thanks to photosynthetic pigments, such as

chlorophyll and  bacteriochlorophyll.  Chlorophyll breakdown products are usually tested for their antioxidant and

anti-inflammatory effects. The chlorophyll derivative pheophorbide a (PPBa) is a photosensitizer that can induce

significant antiproliferative effects in several human cancer cell lines . This compound is isolated from silkworm

excreta  and Chinese medicinal herb  Scutellaria barbarta  . Pheophorbide-b methyl ester, 13(2)-hydroxyl

(13(2)-S) pheophorbide-a methyl ester and 13(2)-hydroxyl (13(2)-R) pheophorbide-b methyl ester all demonstrated

dark cytotoxic activity against leukemia cells with IC(50) values in the range of 46–79 µM, whereas the compound

pheophorbide—a methyl ester exhibited only weak dark cytotoxic activity .

Many studies report the inhibitory effect of pheophorbide a on the growth of human neoplastic cells. Studies

regarding dark toxicities of pheophorbides are performed in hepatocellular carcinoma , human uterine cancer

, glioblastoma multiforme  and bladder cancer . PDT studies with the inhibitory effect of pheophorbide are

reported in head and neck cancer , Barrett’s esophagus , leukemia , prostate cancer  and

esophageal cancer .

Overall, the research suggests that PDT in combination with Pheophorbide a with the appropriate wavelength (670

nm) turns out to be a potential therapeutic strategy against many cancers.

3.1.2. Curcumins

Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid

metabolic panaceas) candidate .
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Curcumin is a photosensitizer that is usually found in ketone and enol forms and is isolated from the Curcuma

longa rhizome. Curcuminoids used in PDT significantly inhibited cell viability in breast cancer cell lines .

Demethoxycurcumin is known to have the highest anti-proliferative effect ; broad pharmacological activity of

curcumin has been described, such as antibacterial, antiviral, anti-inflammatory and anti-tumor activities .

Koon et al., showed that the biological activity of curcumin can be magnified by the combination of light .

Subsequently, Dujiic et al. investigated the photodynamic effect of curcumin as an anticancer drug on a tumor

model of A431 (human cell epithelial carcinoma). They showed that tumor growth was significantly inhibited in PDT,

whereas the control group showed no reduction in tumor volume . Several studies have been carried out with

the use of curcumin in PDT and confirmed its anticancer and antibacterial properties . The antiviral

activity of photoactivated curcumin was presented in treatment of norovirus surrogates, feline calicivirus (FCV), and

murine norovirus (MNV). Results showed that photoactivated curcumin at 50 µg/mL reduced FCV titers by almost 5

log after incubation at 37 °C for 30 min. Lower antiviral activity (0.73 log TCID /mL reduction) was reported for

MNV. At room temperature, curcumin at 5 µg/mL reduced FCV titers by 1.75 log TCID /mL. These results

represent a step forward in improving food safety using photoactivated curcumin as an alternative natural additive

to reduce viral contamination .

In addition, it has been shown that various modifications in the chemical structure of curcumin can further improve

its properties by enhancing molecular stability or solubility .

3.1.3. Anthraquinones

Anthraquinones are a group of compounds that have been isolated from the leaves and stems of

the  Heterophyllaea pustulata  Hook f. (Rubiaceae) plant. They show a natural phototoxic effect, and the

photosensitizing properties are due to the production of singlet oxygen and/or a superoxide anion radical .

Comini et al.  anthraquinones such as soranjidiol, soranjidiol 1-methyl ether, rubiadin and rubiadin 1-methyl were

found to exhibit PDT activity against human breast cancer cells transfected with caspase-3 (MCF-7) . The AQs

were reported as kinase and tyrosinase inhibitors as well as cytotoxicity agents. The M. elliptica AQs such as

morindone, soranjidiol and rubiadin were also reported for their antitumor activity against lymphocytic leukemia (P-

388) cells.

Rumie Vittar et al.  presented innovative evidence confirming the anti-tumor activity of rubiadin in combination

with soranjidiol in in vitro photodynamic therapy, triggering the process of apoptosis in human cancer cells. They

showed that the combination can be an effective therapeutic strategy.

3.1.4. Polyacetylene and Thiophenes

Thiophene derivatives are characterized by cytotoxic and phototoxic properties towards neoplastic cells . The

cytotoxic properties of the thiophenes were not observed in the absence of light. Polyacetylene and thiophene

compounds are activated or excited by light with a wavelength of 314–350 nm . Thiophenes derived

from  Echinops latifolius Tausch  root are cytotoxic to human cancer cell lines including A375-S2, HeLa, HL-60,
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K562 and MCF-7 . Apart from a strong cytotoxic effect on human tumor cell lines, strong analgesic, anti-

inflammatory and antibacterial properties are mentioned. After irradiation with near UV light, α-terthienyl and most

of its analogues had significant toxicity, with minimum inhibitory concentrations in the range of 0.02–40 μM. Without

irradiation Thiophene compounds had no significant toxicity .

3.1.5. Tolyporphin

Cyanobacteria are the source of tolyporphins, a member of the porphyrin family. It locates in the endoplasmic

reticulum (ER) and is associated with strong phototoxicity in PDT. After the use of tolyporphins, damage to the

nuclear membrane has been observed, which may damage neoplastic cells, and indirectly also affect vascular

damage .

3.1.6. Chlorophyllin

Cyanobacteria are also a source of chlorophyllin, which is a derivative of chlorophyll. Chlorophyllin is mainly

localized in lysosomes and mitochondria, whereby cancer cells are destroyed by autophagy and apoptosis in PDT.

Studies have shown that chlorophyllin has favorable optical properties (600–670 nm) and solubility in aqueous

solutions. It is also readily available and chlorophyllin has been successfully used against cancer cells of the

bladder  and of the MCF7 breast cancer cell line .

3.1.7. Hypericin

Hypericin is an anthraquinone derivative, isolated from the herb  Hipericum perforatum. It is widely used in folk

medicine, as an antiviral, antidepressant, natural antibiotic and as an anti-cancer drug .

The photodynamic activity of hypericin is attributed to its high cell uptake due to high lipophilicity. It is a molecule

that requires a carrier in the form of liposomes, micelles or nanoparticles . Theodossiou et al. investigated the

hypericin-PDT mechanism and showed that hypericin accumulates mainly in the membranes of various organelles,

especially the mitochondria and the endoplasmic reticulum (ER)–Golgi complex, inducing cell death through both

Type I and Type II reactions . In photodynamic therapy with hypericin, the produced reactive oxygen species

can cause oxidative damage and destroy neoplastic tumors . According to studies, the main mechanisms of

cancer cell death after hypericin-PDT are apoptosis, autophagy and necrosis .

Due to the low solubility of hypericin and the short absorption wavelength (590 nm), a large number of analogues

was synthesized, which improved its physicochemical properties .

Hypericin-mediated PDT has been used in the treatment of skin  cervical  glioblastoma  and bladder

tumors . Treatment with activated hypericin of patients with nasopharyngeal carcinoma cells  and human

pancreatic cells  is promising. In summary, hypericin is one of the strongest PS extracted from natural sources

.
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Liposomal meso-tetrahydroxyphenyl chlorin derivative (Foslipos ) and hypericin was used in 1:1 combination to

treat head and neck squamous cell carcinoma (HNSCC) cell lines (UMB-SCC 745 and UMB-SCC). Foslipos -

treated cells showed cellular toxicity at the highest concentration (10 µg/mL). In contrast, hypericin was toxic at all

concentrations (10–0.6 µg/mL). The combination of photosensitizer was nontoxic at all concentrations (10–0.6

µg/mL). Data have shown that combinatorial use reduces the toxicity of the PS, which may be beneficial in the

treatment of PDT .

ROS fluorescence was only visible after hypericin and mixture-induced PDT. Cell viability was also more affected

with these two treatment options under the selected conditions. Examination of death pathways showed that

hypericin-mediated cell death was apoptotic, with mTHPC necrotic and the 1:1 mixture showed features of both

.

3.1.8. Hypocrellin

Hypocrellins are isolated from the parasitic fungi Hypocrella bambusae and Shiraia bambusicola, found mainly in

Asia. There is hypocrellin a and b which belong to the general class of perylene quinonoid pigments. These

compounds have been extensively studied as photosensitizers in PDT. Hypocrellins are characterized by high

singlet oxygen quantum efficiency, which has attracted attention as potential PS for PDT. Activated hypocrellins

produce reactive oxygen species and hypocrellin radicals, which may contribute to phototoxicity of cells.

Hypocrellins have the property of easy chemical modification to increase phototoxicity, pharmacokinetics, solubility

and light absorption in the red spectral region . The absorption of the wavelength of the hypocrellins is below

600nm, which is considered a disadvantage as PS. Hypocrellins have an affinity for binding to lipids and may also

be located in lysosomal compartments, mitochondria and cell membranes . Cell death occurs through

apoptosis or necrosis through peroxidation of lipid membranes .

When activated with light, hypocrellins have antiviral and antitumor properties , and have been used

successfully in cancer phototherapy, including the treatment of skin cancer  and the breast cancer .

3.1.9. Cercosporin

The toxic effect of cercosporin as PS is the production of singlet oxygen, which causes the formation of free

radicals, which in turn damage the cytoplasmic membrane and ultimately cell lysis . Cercospora kikuchii is a

source of cercosporin extraction, while related elsinochromes are derived from the  Elsinoe  fungus family .

Mastrangelopoulou et al. showed that cercosporin is localized in both the endoplasmic reticulum and mitochondrial

membranes and cell death occurs through apoptosis and necrosis . The disadvantage of cercosporin in clinical

use is its short activation wavelength (below 532 nm) and poor water solubility.

The photocytotoxicity of cyclosporine was assessed positively against two human glioblastoma cell lines (T98G

and U87) and one breast adenocarcinoma (MCF7) with positive results .
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Cercosporin is a strong photosensitizer, but with a short activation wavelength, making it mainly suitable for

superficial PDT treatments .

3.1.10. Riboflavin

Leafy vegetables are a main rich source of riboflavin (vitamin B2), but also mushrooms and dairy products also

contain it. It is a promising alternative PS molecule which generates ROS after exposure to blue light. Riboflavin

has two peaks in the UVA (360 nm) and blue (440 nm) wavelength regions .

Due to its favorable and well-known toxicological and pharmacokinetic properties , riboflavin is recognized

by the FDA as generally safe . Hassan et al.  reported that riboflavin-PDT may support cisplatin-based

chemotherapy by alleviating cisplatin-induced toxicity. Riboflavin increased the sensitivity of cisplatin-resistant

tumor cells in a mouse model. Cancer cells entered the path of apoptosis and autophagy under the influence of a

riboflavin–PDT adjuvant. The results suggest that in PDT therapy, cisplatin in combination with riboflavin may be a

better treatment option in cancer patients than cisplatin alone.

The properties of riboflavin as PS have been used successfully in the treatment of many cancers, i.e., in squamous

carcinoma cells (SCC-13) , in HeLa cells  or in melanoma .

3.1.11. Alkaloids

Alkaloids are a diverse group of secondary metabolites obtained from higher plants. The chemical structure

classifies them as heterocyclic compounds with a nitrogen atom in the ring. The representative alkaloid considered

to be the most photochemical is berberine . Numerous studies demonstrate that berberine has anti-cancer

properties enhanced by UV radiation and blue light . Photoactivation of berberine occurs at a wavelength of

410 nm and has been shown to be effective in controlling the growth of brain cancer cells . Lopes et al.

confirmed that berberine has promising potential as a photosensitizer in PDT. Their proposed treatment induced

changes in metabolites related to cell proliferation, tumor formation and angiogenesis in renal cell carcinoma

(RCC)  and in cervical cancer cells (HaCaT) .

Thus, they confirmed a significant anti-cancer effect on kidney cancer cells. Activa berberine promotes autophagy

and apoptosis by producing ROS . Berberine can be used as a natural PS in PDT applications with

minimal side effects .

Among the alkaloids, carboline  and harmine  are distinguished as strong photosensitizers. They are highly

photoactive compounds and after irradiation they produce a significant amount of ROS .

Jantova et al. confirmed the ability of alkaloids to photosensitize and generate ROS in the presence of a light

source .

3.1.12. Furanocoumarins
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[137][138][139][140]
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Furanocoumarins are a structurally diverse group of natural substances, i.e., secondary metabolites isolated from

higher plants, showing a number of bioactivities, including anti-cancer .

The most active photoactive substance is psoralen, sensitive to UVA light in the wavelength range of 300–400 nm.

It has been shown to be effective in the treatment of psoriasis, dermatitis, eczema and other skin problems .

Numerous studies indicate the anti-cancer activity of furanocoumarins against various types of cancer, such as

breast, skin and leukemia. When exposed to light, furanocoumarins induce cancer cell death by inhibiting the

signal transducer and activator of transcription3 (STAT3), nuclear factor B (NF-B), phosphatidylinositol-3 kinase

and AKT protein expression. These pathways play a key role in tumor development by activating several

inflammatory genes. Panno et al. investigated the efficacy of furanocoumarins against breast cancer. They found

inhibition of tumor growth by inhibiting STAT3 protein expression .

On the other hand, the team of Kim et al.  showed that in leukemia cells, furanocoumarins inactivated JAK

(Janus-activated kinase), c-Src and STAT3 proteins and lowered the concentrations of Bcl-xl and Bcl-2 proteins,

which are responsible for the apoptosis process. Increased activity of furanocoumarins, bergapten and

citroptenhas, also been demonstrated after UV irradiation against malignant melanoma (A375) .

Psoralen and its derivatives like 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) increase

cytotoxicity after UV irradiation with a wavelength of 320–400 nm and are effective against cutaneous T-cell

lymphoma .

PUVA (Psoralen Ultra-Violet A) treatment has been shown furocoumarins having a methoxy group to be effective

against B16F10 mouse melanoma cells .
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