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Neuromorphic photonics is a cutting-edge fusion of neuroscience-inspired computing and photonics technology to

overcome the constraints of conventional computing architectures. Its significance lies in the potential to transform

information processing by mimicking the parallelism and efficiency of the human brain. Using optics and photonics

principles, neuromorphic devices can execute intricate computations swiftly and with impressive energy efficiency. This

innovation holds promise for advancing artificial intelligence and machine learning while addressing the limitations of

traditional silicon-based computing. 

Keywords: neuromorphic computing ; photonic integrated circuit ; imaging ; artificial intelligence ; machine learning

1. Introduction

Neuromorphic photonics represents a cutting-edge, multidisciplinary realm at the confluence of artificial intelligence (AI),

photonics, and neuroscience . Its overarching goal is nothing short of a transformative evolution in computing,

seamlessly uniting the foundational principles of neuromorphic computing with the swiftness and efficiency inherent in

photonics . This inventive paradigm employs light-based neurons and optical synapses to emulate the intricate

behaviors of human brain cells closely, resulting in specialized hardware uniquely tailored for the domains of AI and

machine learning . The standout feature of this field is its remarkable energy efficiency, enabling lightning-fast, parallel

data processing while conserving power resources. By harnessing the velocity of light and mirroring the intricate neural

networks (NNs) of the human brain, neuromorphic photonics has the potential to unlock entirely novel horizons in high-

performance computing, poised to dramatically elevate applications in pattern recognition, data manipulation, and intricate

problem-solving . While still in its infancy, this field holds promise of more capable and efficient AI systems, with the

potential to fundamentally reshape the computing landscape .

AI technologies, encompassing facial recognition, machine learning, and autonomous driving, are reshaping our daily

lives . Deploying of task-specific AI systems demands training NNs with extensive datasets on conventional

computers. However, limitations in throughput and efficiency due to prevailing computer architectures currently hinder this

process . Drawing inspiration from the intricate architecture of the human brain, researchers are pioneering the

development of next-generation intelligent computing systems designed to emulate synapses and neurons. These

systems encode information using spatiotemporal pulse patterns generated by presynaptic neurons, with postsynaptic

neurons accumulating and generating new neuronal pulses upon reaching stimulation thresholds. By integrating myriad

neurons, these systems give rise to nonlinear spiking NNs, enabling information processing through spatiotemporally

encoded neuron pulses. Intel’s TrueNorth chips, for instance, have achieved a remarkable level of energy efficiency,

surpassing conventional microelectronic chips for specific AI tasks and rivaling the computational capabilities of the

human brain . Nevertheless, the scalability of integrated neurons remains hampered by challenges such as electrical

interconnect bandwidth, pulse loss, and communication delays. Optical interconnects, offering substantial bandwidth,

minimal loss, and negligible latency, have the potential to address these electrical interconnect limitations .

The demands of real-time, data-intensive, intelligent information processing tasks underscore the need for innovative and

smart optimization hardware. Convolutional neural networks (CNNs) excel at extracting hierarchical feature maps to

enhance recognition accuracy, and there is a growing interest in employing photonics for their implementation. In this

context, a large-scale and adaptable photonic convolutional neural network (PCNN) that leverages a hardware-friendly

distributed feedback laser diode (DFB-LD) is proposed . This approach involves applying a biological time-to-first-spike

coding method to a DFB-LD neuron to execute temporal convolutional operations (TCO) for image processing. In practical

experiments, PCNN successfully employs TCO to extract image features using 11 × 11 convolutional kernels. Additionally,

the temporal pulse shaping of a DFB-LD neuron is explored to construct a densely connected and fully connected layer,

enabling rapid adjustments of synaptic weights at a remarkable rate of 5 GHz and providing high classification accuracy in

benchmark image classification tasks, with 98.56% for MNIST and 87.48% for Fashion-MNIST. These findings underscore

the potential of optical analog computing platforms resembling neurons for real-time and intricate intelligent processing

networks .

2. Neuromorphic Photonic Integrated Circuits

With the recent emergence of Photonic Integrated Circuit (PIC) technology platforms, the timing is perfect for developing

scalable, fully reconfigurable systems capable of executing vastly more complex operations than ever before . While
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numerous fields, such as microwave photonics and physical layer security, stand to benefit significantly from this rapid

increase in complexity, the community has yet to establish a universal processing standard for programming intricate

multistage operations within the photonic domain. Neuromorphic photonics is an exciting and emerging field at the

intersection of neuroscience and photonics. This groundbreaking discipline harnesses the efficiency of NNs and the

lightning-fast capabilities of photonics to create processing systems that can outperform microelectronics by orders of

magnitude. Thanks to their partial analog nature, neuromorphic circuits can leverage optical signals’ vast bandwidth and

energy efficiency. Additionally, they set the stage for a comprehensive processing standard for reconfigurable circuits

capable of theoretically executing any task that an artificial NN can compute. Integrating these systems with low-power

microelectronic control promises processing efficiencies that surpass current digital standards by a considerable margin.

In essence, the emergence of PIC technology, coupled with the advent of neuromorphic photonics, heralds a new era of

computing where the potential for innovation and efficiency is boundless.

To transcend the constraints imposed by traditional microelectronic computing, it is imperative to incorporate

unconventional techniques that leverage new processing methodologies. PICs offer a promising avenue to address these

limitations, and several factors underscore their suitability. Firstly, photonic interconnects present a direct solution to the

data transport quandary: a substantial portion of energy consumption on modern microelectronic chips is attributed to

metal wires’ constant charging and discharging. This energy overhead can be circumvented by using on-chip photonic

links, especially as optical devices advance in efficiency . Secondly, photonic systems can harness optical multiplexing

and high-speed signals to achieve an impressive bandwidth density. This translates into a remarkable computational

density (operations per second per square millimeter, ops/s/mm ) for closely spaced waveguides or filters that perform

densely packed operations .

Furthermore, implementing linear operations like Multiply-Accumulate (MACs) in the photonic realm inherently consumes

minimal energy, yielding a highly advantageous, sublinear scaling of energy consumption concerning the number of

operations conducted . The combination of these three properties can deliver substantial enhancements in

performance, encompassing energy efficiency and computational density, as illustrated in Figure 1.

Figure 1. A comparison between specialized deep-learning digital electronic architectures and silicon photonic and

nanophotonic platforms. In this context, photonic systems can support high on-chip bandwidth densities while maintaining

low energy consumption during data transmission and computational tasks. The metrics for electronic architectures have

been sourced from various references . The metrics for silicon photonic platforms are estimated based on a

contemporary silicon photonic setup operating at 20 GHz, comprising 100 channels with tightly packed micro rings.

Meanwhile, the nanophotonic metrics are derived from the assumption of closely packed athermal microdisks , each

occupying an area of approximately 20 µm, running at 100 GHz and operating close to the shot noise limit. Inspired by

.

Neuromorphic photonic systems have demonstrated processing speeds 6–8 orders of magnitude higher than their

electronic counterparts . Silicon photonics, an optoelectronic integration technology compatible with well-established

microelectronics, harmonizes the ultra-large-scale logic and precision manufacturing attributes of CMOS technology with

the high-speed and low-power consumption benefits of photonic technology, effectively reconciling the conflict between

technological advancement and cost constraints. In recent years, on-chip NNs based on silicon photonic technology have

made significant strides . In 2017, Shen et al. showcased an on-chip NN employing a silicon-based Mach–Zehnder

interferometer structure capable of recognizing fundamental vowels . In this architecture, an external subsystem

configures the matrix element values for vector-matrix multiplication using Mach–Zehnder interferometer (MZI) structures.

To modify these values during optimization, signals must be relayed from the NN to the control system. Tait et al.

introduced on-chip variable weight synapses based on silicon electro-optical modulators in 2016 , as well as on-chip

neurons relying on silicon electro-optical modulators in conjunction with off-chip multi-wavelength lasers, wavelength

division multiplexers/demultiplexers, and on-chip photodetectors in 2019 . This innovative structure facilitates weight
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adjustments by modulating the silicon microring with electrical signals and regulates the silicon microring modulator to

achieve neuron functionality through electrical signals derived from on-chip detector optoelectrical conversion.

Neuromorphic PICs on silicon platforms have witnessed remarkable advancements in recent times . These

photonic NNs (PNNs), even in their early stages with a limited number of neurons, have showcased their prowess in high-

bandwidth, low-latency machine-learning signal processing applications. The next frontier in this domain involves the

quest for large-scale PNNs endowed with flexibility and scalability, positioning them to tackle data-intensive machine

learning (ML) applications with high-speed requirements. In , architectural foundations are proposed, focusing on

microring resonator (MRR)-based photonic neurons, both non-spiking and spiking, and the orchestration of PNNs through

a broadcast-and-weight approach. A novel expansion of NN topologies by cascading photonic broadcast loops is

discussed, culminating in a scalable NN structure with consistent wavelengths. Moreover, incorporating wavelength-

selective switches (WSS) within these broadcasting loops is proposed, delivering the concept of a wavelength-switched

photonic NN (WS-PNN). This innovative architecture opens new doors for integrating off-chip WSS switches, enabling the

interconnection of photonic neurons in versatile combinations, delivering unmatched scalability for PNNs, and

accommodating an array of feedforward and recurrent NN topologies.

2.1. Deep DNNs

Deep neural networks (DNNs) have gained prominence due to advancements in processing power and the ubiquity of

data. Faster and more affordable computing resources have facilitated rapid convergence, making deep learning (DL)

more accessible. The widespread availability of data, along with improved algorithms, enhances the value of these

networks, especially in applications like chatbots for businesses . These networks, however, demand substantial

computational power and extensive data sets. They excel in scenarios where ample data is available and where it is

feasible to categorize or rank preferred outcomes .

DNN represents a sophisticated machine learning (ML) technique that empowers computers, through training, to

accomplish tasks that would be exceedingly challenging with traditional programming methods . The inspiration for NN

algorithms is drawn from the human brain and its intricate functions. Like the human mind, DNNs are designed not to rely

solely on predetermined rules but to predict solutions and draw conclusions based on previous iterations and experiences.

A NN consists of multiple layers of interconnected nodes that receive input from previous layers and generate an output,

ultimately reaching a final result. NNs can encompass various hidden layers, and the complexity increases with adding

more layers. Here are distinct neural network architectures (Figure 2):

Figure 2. Traditional NN (left) versus DNN (right).

Traditional NNs: Typically composed of 2 or 3 hidden layers.

DL Networks: These can contain up to 150 hidden layers, making them significantly more complex.

A DNN is considerably more intricate than a “simple” NN. A standard NN operates akin to a chess game, adhering to

predefined algorithms. It offers different tactics based on inputs from the programmer, such as how chess pieces move,

the size of the chessboard, and strategies for various situations. However, a NN transcends this input-bound behavior and

can learn from past experiences, evolving into a DNN. For instance, on the same computer, you can train an NN, play

games against other individuals, and enable it to learn as it engages in these matches. As it learns from various players,

defeating a DNN, even for chess masters, might become exceedingly challenging or even insurmountable. DNNs can

recognize voice commands, identify voices, recognize sounds and graphics, and accomplish a wide array of tasks beyond

the capacity of traditional NNs. They leverage “big data” along with sophisticated algorithms to tackle complex problems,

often requiring minimal to no human intervention.

Understanding the process of a DNN is best illustrated through a practical example. Imagine you have an extensive

collection of hundreds of thousands of images, some of which feature dogs, and you aim to create a computer program to

identify dogs in these pictures. At this point, you face a crucial decision. You can either write a program explicitly designed

to identify dogs or opt for a more intelligent approach—a program that “learns” how to recognize dogs. Initially, you might

choose the former option, but this turns out to be a less-than-ideal choice. Conventional programming techniques require

a laborious and intricate process, and the outcomes often lack the desired accuracy. To explicitly identify dog pictures, you

must create a software program filled with conditional “if” and “then” statements. This program would elevate the

probability of a dog’s presence whenever it detects a dog-like attribute, such as fur, floppy ears, or a tail.

[23][27][28][29]

[30]

[31][32]

[4]

[33]



Convolutional neural networks (CNNs) represent a subset of AI explicitly designed to handle and learn from vast datasets.

These networks are aptly named due to their distinctive architecture and purpose. CNNs excel in image recognition and

perform not only generative but also descriptive tasks. Generative tasks encompass various activities such as auto-

cropping, caption generation, video processing, mimeographing, and image overlays. A vital component of a CNN is the

convolutional layer, where each neuron processes information from a small portion of the visual field, with their inputs

forming a checksum-like pattern to create feature maps.

Artificial neural networks (ANNs) are interconnected perceptrons organized into various layers. ANNs are often called

Feedforward Neural Networks, as they process inputs linearly, forwarding the results through the network layers. These

networks are known as universal function approximators, capable of learning any function, and their versatility is

attributed, in part, to activation functions. These functions introduce nonlinearity into the network, enabling it to learn

intricate relationships between inputs and outputs and promoting cooperative learning among network parts. It is

important to note that the logic behind neural networks is often incomprehensible to humans. Deep learning models

operate as black boxes, with hidden layers of nodes creating complex, interconnected logic. Some attempts have been

made to visualize the logic behind NNs for image recognition, but this is not always possible, especially for demanding

tasks.

2.2. NNs with Complex Arithmetic Calculations

While computers excel at performing complex calculations, the realm of solving mathematical problems continues to

present a significant challenge for artificial intelligence . This challenge can be viewed from two distinct angles. On the

one hand, grounding structured mathematical knowledge into a framework of intrinsic meaning has persisted as a

longstanding issue in symbolic AI . On the other hand, NNs have traditionally struggled to acquire mathematical

proficiency, as their nature primarily hinges on statistical pattern recognition abilities rather than the explicit application of

syntactic rules . The process of mathematical reasoning poses well-documented hurdles for connectionist models.

Mathematical formulas employ symbols that often appear as arbitrary tokens, necessitating manipulation under well-

defined rules that involve compositionality and systematicity. Furthermore, extracting mathematical knowledge from

examples should extend beyond the observed data distribution, facilitating the ability to extrapolate by discovering

fundamental ‘first principles’.

Notwithstanding these formidable challenges, recent breakthroughs in DL have sparked a renewed enthusiasm for the

notion that NNs may attain advanced reasoning capabilities, consequently displaying symbolic behavior . Although

deep networks have historically grappled with fundamental concepts such as the understanding of ‘integer numbers’ ,

the last few years have witnessed the emergence of several models that showcase remarkable proficiency in tackling

intricate mathematical tasks.

For instance, sequence-to-sequence architectures have demonstrated their ability to learn the intricacies of function

integration and the resolution of ordinary differential equations, occasionally outperforming even widely used

mathematical software packages in terms of accuracy . DL models have further made notable inroads in the realm of

automated theorem proving  and have actively supported expert mathematicians in the formulation of conjectures and

the establishment of pioneering results in the realm of pure mathematics .

In remarkable developments from last year, deep reinforcement learning uncovered a more efficient algorithm for

performing matrix multiplication , while fine-tuning a pre-trained language model on computer code enabled the

resolution of university-level mathematical problems at a level comparable to human expertise . These achievements

herald a promising new era where neural networks may bridge the gap between mathematical reasoning and machine

learning, potentially unlocking new frontiers in artificial intelligence.

These outstanding accomplishments owe much to the advent of meticulously curated, expansive datasets encompassing

mathematical problems and their corresponding solutions. Furthermore, they owe their success to inventing novel,

sometimes ad hoc, architectures tailored to more effectively process numerical symbols and mathematical notations. In

addition, strides in many tasks have been propelled by creating large-scale language models, which exhibit astonishing

innate numerical capabilities ‘out of the box’, that can be further honed through fine-tuning and strategic prompting

techniques.

However, it is imperative to emphasize that these achievements do not necessarily equate to a full grasp of the semantics

underlying numbers and basic arithmetic by these models. Their performance on relatively straightforward numerical tasks

often reveals fragility, signaling a need to enhance their foundational mathematical skills to establish a more dependable

foundation for mathematical capabilities. This notion finds support in a wealth of literature on child development and

education, which underscores the significance of fundamental numeracy skills such as counting, quantity comparison,

comprehension of number order, and mastery of the base-ten positional numeral system as robust predictors of later

mathematical achievement .

The quest for solutions to matrix eigenvalues has perpetually been a focal point of contemporary numerical analysis, with

profound implications for the practical application of engineering technology and scientific research. While extant
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algorithms for matrix eigenvalue computation have made considerable progress in computational accuracy and efficiency,

they have struggled to find a foothold of photonic platforms. Enter the PNN, a remarkable fusion of potent problem-solving

capabilities and the inherent advantages of photonic computing, characterized by its astonishing speed and minimal

energy consumption. In , an innovative approach introduces an eigenvalue solver tailored for real-value symmetric

matrices, leveraging reconfigurable PNNs. This strategy demonstrates the practicality of solving eigenvalues for n × n

real-value symmetric matrices using locally connected networks. In a groundbreaking series of experiments, the capacity

to solve eigenvalues for 2 × 2, 3 × 3, and 4 × 4 real-value symmetric matrices through the deployment of graphene/Si

thermo-optical modulated reconfigurable photonic neural networks featuring a saturated absorption nonlinear activation

layer was showcased. Theoretical predictions indicate a remarkable test set accuracy of 93.6% for 2 × 2 matrices, with

experimental results achieving a measured accuracy of 78.8%, aligning with standardized metrics for easy comparison.

This work not only charts a course for on-chip integrated photonic solutions to eigenvalue computation for real-value

symmetric matrices but also forms the bedrock for a new era of intelligent on-chip integrated all-optical computing. This

breakthrough promises to transform the landscape of computational methodologies, ushering in a future where photonic

platforms play a pivotal role in numerical problem-solving across various domains .

The objective of the proposed PNN is to address the challenge of computing eigenvalues for symmetric matrices. This

problem frequently arises in the context of various physical scenarios (as shown in Figure 3a). The initial focus centers on

solving the eigenvalue problem for 2 × 2 symmetric matrices characterized by non-negative real-value elements and

eigenvalues. Furthermore, the matrix elements were confined within the range of 0 to 10. This limitation does not

constrain the network’s performance, as any other matrices can be derived through linear scaling from a matrix within this

constrained domain. Crucially, this network is adaptable and designed to handle the eigenvalue problem for n × n matrices

under similar conditions. This versatility allows it to be employed in diverse scenarios, offering a powerful tool for

eigenvalue computation in various applications.

Figure 3. Conceptual framework of the newly proposed photonic neural network. The essential steps involved in

achieving the desired task (a), an optical micrograph showcasing the distinctive structure of the proposed network,

featuring nine input ports (i –i ) and four output ports (o –o )  (b), an optical micrograph that zooms in on a single cell

within the network, housing two phase shifters and a merging structure  (c).

The structure of the PNN is characterized by an architectural design that includes a single linear fully connected layer,

complemented by a sophisticated five-layer locally connected arrangement. This network boasts nine input and four

output ports, as Figure 3b depicts. The five-layer structure is a critical component of the described architecture,

characterized by an intricate arrangement of neurons. In the first layer, eight neurons are featured, each sharing a phase

shifter with its neighboring unit (as illustrated in Figure 3c).

The next layer comprises seven neurons, with each successive layer reducing the count by one, resulting in 35 tunable

weights. Additionally, the researchers introduced two extra weights for training. The first weight pertains to the input light’s

intensity, denoting the intensity ratio. This factor is crucial as the nonlinear activation function behaves differently under

varying intensities. The second weight governs the output ratio, linearly adjusting the relationship between output intensity

and the corresponding eigenvalue, effectively establishing the output ratio. This adjustment is essential because, unlike

electronic neural networks, optical layers cannot manipulate light intensity freely and directly. Consequently, the absolute

value of the output signal may not align with the scale provided in the dataset.

Photonic circuits have also found their applicability in complex-valued neural networks . The articles 

presented neural network architectures that use complex arithmetic computations and a MZI to encode information in both

phase and amplitude (Figure 4a,b). This approach allows complex arithmetic to be performed using the properties of

interference. The resulting complex-valued ONCs (optical neural chips) perform better on several tasks than their

counterparts in single-neuron and deployed network implementations. A single complex-valued neuron can solve some

nonlinear problems that a real-valued analog cannot compute. There are many comparative analyses, tests, and trainings
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of the NN on various datasets. The data obtained suggest that this architecture uses double the number of trained free

parameters, and can classify nonlinear patterns with simple architectures (fewer layers). Research results have shown

that these architectures significantly improve the speed and accuracy of computation compared to traditional real-valued

circuits.

Figure 4. The developed architectures of complex-valued optical neural architectures using: (a,b) MZIs, the circuits

themselves realize a multiport interferometer with phase shifters (PSs) inserts used for phase tuning ; (c) MRRs for

matrix-vector multiplication (MVM) applications using WDM .

The application of MRR arrays in complex-valued neural networks is also possible, as demonstrated in . To realize the

transition from real values to complex-valued data, an approach with a pre-decomposition of the input matrix (the values

are supplied to beams with different wavelengths employing optical intensity modulators) and the transmission matrix

(controlled by selection of values utilizing heaters on the resonator rings) (Figure 4c) is used in this work. A balanced

photodetector registers the result of the multiplication of the two matrices. This approach allowed the realization of other

mathematical transformations, including discrete Fourier transform (DFT) and convolutional image processing. The results

of the experiments in both signal and image processing unequivocally show that the newly proposed system can expand

matrix computation to include real numbers, full complex numbers, higher processing dimensions, and convolution.

Consequently, the processor can function as a versatile matrix arithmetic processor capable of handling intricate tasks in

different scenarios. The researchers note that improved system performance can be obtained by adding parallel

computation with WDM and increasing the degree of integration of the circuit components.

2.3. Spike NNs

Over the past decade, ANNs have made remarkable strides, progressing from the initial multi-layer perceptron (MLP) of

the first generation to the cutting-edge techniques of the second-generation DNNs . This advancement has been

significantly fueled by abundant annotated data and the widespread availability of high-performance computing devices,

including versatile Graphics Processing Units (GPUs). However, even with these achievements, ANNs still fall short of

matching biological neural networks’ (BNN) energy efficiency and their online learning capabilities. Many endeavors have

been undertaken to diminish the power consumption of conventional deep-learning models. These efforts aim to uncover

more streamlined networks that deliver similar performance with reduced complexity and fewer parameters than their

original counterparts. Several techniques have been developed for this purpose, including quantization , pruning ,

and knowledge distillation . Quantization involves converting the network’s weights and inputs into integer types,

thereby lightening the overall computational load. Pruning entails the iterative removal of connections within a network

during or after training to compress the network without compromising performance. Knowledge distillation transfers the

intricate knowledge acquired by a high-complexity network, the teacher, to a lightweight network known as the student.

While ANNs and DNNs have traditionally been inspired by the brain, they fundamentally differ in structure, neural

computations, and learning rules compared to BNNs. This realization has led to the emergence of spiking neural networks

(SNNs), often regarded as the third generation of NNs, offering the potential to surmount the limitations of ANNs. The

utilization of SNNs on neuromorphic hardware like TrueNorth , Loihi , SpiNNaker , NeuroGrid , and others

presents a promising solution to the energy consumption predicament. In SNNs, similar to BNNs, neurons communicate

via discrete electrical signals known as spikes and operate continuously in time. Due to their functional resemblance to

BNNs, SNNs can exploit the sparsity inherent in biological systems and are highly amenable to temporal coding . While
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SNNs may still trail behind DNNs regarding overall performance, this gap is narrowing for specific tasks. Notably, SNNs

typically demand considerably less energy for their operations. Nevertheless, training SNNs remains challenging due to

the intricate dynamics of neurons and the non-differentiable nature of spike operations.

2.4. Convolutional Neural Networks (CNNs)

CNNs are inherently feedforward networks, exhibiting unidirectional information flow, transmitting data exclusively from

inputs to outputs. As ANNs draw inspiration from biological systems, CNNs share a similar motivation. Their architecture is

heavily influenced by the brain’s visual cortex structure, characterized by layers of simple and complex cells . CNN

architectures offer a range of variations yet generally comprise convolutional and pooling (subsampling) layers organized

into distinct modules. These modules are subsequently followed by one or more fully connected layers, resembling a

conventional feedforward NN. Often, these modules are stacked to create deep models. Figure 5 illustrates typical CNN

architecture for a simplified image classification task, where an image is initially fed into the network and undergoes

several convolution and pooling stages. The representations obtained from these operations are then channeled into one

or more fully connected layers. Finally, the last fully connected layer provides the output as a class label. While this

architecture remains the most prevalent in the literature, various changes have been proposed in recent years to enhance

image classification accuracy or economize on computation costs.

Figure 5. CNN image classification pipeline.

CNNs represent a revolutionary paradigm shift in image recognition, enabling the detection and interpretation of intricate

patterns within visual data . Their effectiveness is unrivaled, positioning them as the preeminent architecture for image

classification, retrieval, and detection tasks, delivering results characterized by exceptional accuracy. The versatility of

CNNs extends to real-world scenarios, where they consistently yield high-quality results. They excel in localizing and

identifying objects, be it a person, a car, a bird, or any other entity within an image. This adaptability has made CNNs the

default choice for predictive image input tasks. A fundamental attribute of CNNs is their capacity to attain ‘spatial

invariance’. This signifies their ability to autonomously learn and extract image features from any location within the

image, obviating the need for manual feature extraction. CNNs draw these features directly from the image or data,

underscoring their potency within the realm of DL and their remarkable precision. As elucidated in , the purpose of

pooling layers is to reduce the spatial resolution of feature maps, thereby achieving spatial invariance to input distortions

and translations. Pooling layers streamline image processing and enhance computational efficiency by reducing the

number of required parameters, resulting in expedited data processing. This reduction in memory demands and

computational costs bolsters the appeal of CNNs. While CNNs have prominently left their mark on image analysis, their

scope extends well beyond this domain. They can be applied to diverse data analysis and classification challenges. This

adaptability spans various sectors, yielding precise outcomes in face recognition, video classification, street and traffic

sign recognition, galaxy classification, and the interpretation and diagnosis of medical images, among others .

2.5. Methods for Implementing the Activation Functions in Optical Neural Networks

AI has become instrumental across diverse applications. Nevertheless, AI systems traditionally demand substantial

computational resources and memory. The diminishing returns of Moore’s law have signaled a shift away from

conventional architectures for AI algorithms, as referenced in . Furthermore, the pressing need for power-efficient

implementations of ANNs has surfaced, particularly in scenarios like image recognition, where processing a single image

may entail billions of operations . There is an active exploration into replacing or supplementing traditional integrated

electronic circuits with photonic circuits. A pivotal facet of silicon photonics is WDM, which empowers the simultaneous

transmission of multiple signals over a shared medium without interference. In Optical Neural Networks (ONNs), WDM

facilitates parallel processing of multiple data streams simultaneously. ONNs promise to surpass their electronic

counterparts in terms of both speed and energy efficiency. For instance, common operations like matrix multiplications are

resource-intensive on conventional computers, but they can be executed at ultra-high speeds using specialized

configurations of photonic networks . All-optical ANNs, devoid of optoelectronics or electro-optical conversion other

than the interface, enable matrix multiplications to occur at the speed of light as optical signals propagate through

waveguides. Silicon photonics further allows the integration of photonic and electronic devices on the same platform .

In this context, two prominent optical modulators, Mach–Zehnder interferometers (MZIs) and microring resonators

(MRRs), are commonly employed . MZIs, although bulkier, exhibit resilience to process and temperature variations
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due to their signal processing method, which involves signal delay within one of the two branches. On the other hand,

MRRs are more compact and rely on slight detuning of the resonant wavelength from the input signal to perform dot

products. This approach enables WDM but introduces challenges related to the accurate calibration of the resonant rings,

as their resonance can drift with temperature variations, leading to increased complexity and power overhead.

Replicating an ANN with an Optical Neural Network (ONN) presents a significant challenge, primarily revolving around the

comprehensive optical implementation of every core module in a conventional ANN. While optical matrix multiplication has

been successfully realized , the activation function (AF), a pivotal element in ANNs, remains a complex issue. The

matrix multiplication stage corresponds to the linear transformation data undergo in an ANN. However, to achieve optimal

results, a non-linear transformation is equally essential, typically performed by the AF. Existing contributions in this domain

have taken different approaches. Some ONN implementations incorporate the AF through computer-based or partially

electrical components. In contrast, others strive for full optical integration by utilizing optical non-linearities at either a

material or device level. In the former approach, the optical circuit’s information is converted into electrical format for AF

processing on a computer, and then the output is reconverted into the optical circuit. However, this method limits the

network’s speed due to electronic circuit constraints, introducing noise that degrades accuracy. Moreover, this dual

conversion process introduces considerable latency and higher power consumption, ultimately undermining the

advantages of optical implementation.

Despite the introduced network delays and significant increases in power consumption and chip size, the O-E-O

conversion remains the most common way to implement the activation function on a photonic chip. Since achieving

nonlinearity of the characteristic only on photonic elements is a challenging task, many researchers are developing

various combinations of photonic elements that can influence the characteristic for the necessary adjustment by electronic

components. Also, solutions include using hybrid structures (Ge/Si hybrid structure in a micro-ring resonator) ,

structures using the free-carrier dispersion effect (scheme with a Mach–Zehnder interferometer loaded with MCR, heating

elements, and a Mach–Zehnder coupler)  and another popular direction—phase change material (PCM) coatings

. The given examples can realize not one but several variants of activation functions: radial basis, sigmoid, softplus,

Relu, and ELU. This increases the flexibility of these structures because, depending on the task solved by the neural

network, different characteristics and threshold values of activation functions may be required.

Consequently, despite the promising results achieved by works that implement the AF electrically , it is believed that

an optical AF is imperative to unlock the full potential of ONNs. Such an approach can mitigate the bottlenecks associated

with electronic conversions and offer the speed, precision, and efficiency required to fully harness the capabilities of

ONNs.

Nevertheless, the implementation of AFs in optical networks can diverge due to the inherent nature of optical computing.

Several standard optical activation functions are employed in these systems. One approach involves Nonlinear Optical

Activation; whereby optical components are deliberately engineered to demonstrate nonlinear behavior. Notable examples

include the Kerr effect and cross-phase modulation, both of which enable the creation of nonlinear optical activations by

nonlinearly modulating the intensity of the light field . Optical bistability is another avenue, employing optical bistable

devices as activation functions. These devices exhibit two stable states and can be manipulated by adjusting input power

or other optical parameters, thus serving as activation elements . Optical switches come to the fore in the realm of all-

optical Switches . These switches can be deployed to execute binary-like activation functions by altering the optical

signal’s path or state based on input intensity, rendering them well-suited for binary activations within optical neural

networks. MZIs represent yet another option, capable of generating optical interference patterns sensitive to input

intensity . Through controlled phase shifts in the interferometer, they can be harnessed to perform activation functions.

Nonlinear crystals offer a different route, enabling the creation of optical parametric amplifiers and oscillators and

introducing nonlinear activation functions within photonic neural networks . Lastly, resonators like ring resonators can

be incorporated as activation functions, capitalizing on their resonance properties and input power levels .

The choice of an optical activation function in photonic neural networks hinges on the specific architectural design,

hardware components, and the intended network characteristics. These optical activation functions are engineered to

carry out nonlinear operations on optical signals, mirroring the behavior of digital activation functions found in conventional

neural networks. Optical neural networks remain an active arena of research, continually producing novel techniques for

implementing optical activation functions.

2.6. Programmable PNNs

The rapid and explosive growth of AI and Deep Learning (DL), coupled with the maturation of photonic integration, has

opened a new realm of possibilities for optics in computational tasks . Applying photons and advanced optical

technologies in Neural Network (NN) hardware holds immense promise. It is projected to substantially increase Multiply-

Accumulate (MAC) operations per second compared to traditional NN electronic platforms. Computational energy

efficiency is estimated to plummet below the femtojoule (fJ) per MAC mark, while the area efficiency is anticipated to soar

beyond millions of MAC operations per square millimeter . This paradigm shift in NN hardware seeks to leverage the

high data transmission rates enabled by integrated photonic technologies while also harnessing the compact size and low

power consumption capabilities inherent to chip-scale designs. Up until now, the predominant focus in photonic devices
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designed for weight calculations has centered around elements that can be slowly reconfigured, such as Thermo-Optic

(T/O) phase shifters  and Phase-Change Material (PCM)-based non-volatile memory structures . This emphasis on

slow reconfiguration implies that inference applications currently take precedence in neuromorphic photonics .

Extending reconfiguration capabilities to Photonic (P)-NN implementations demands a platform that can accommodate

various functional layouts within the same neural hardware. Over the past few years, the realm of photonics has made

significant strides in programmability , and programmable PICs  have emerged as a pivotal resource for fostering

cost-effective, versatile, and multifunctional photonic platforms, akin to the concept of electronic Field-Programmable Gate

Arrays (FPGAs) . Furthermore, it has been demonstrated that merely incorporating slowly reconfigurable Mach–

Zehnder Interferometric (MZI) switches within a suitable architectural framework can provide a plethora of circuit

connectivity and functional possibilities . Nonetheless, the unique characteristics of NN architectures necessitate the

exploration of alternative functionalities yet to be covered by programmable photonic implementations. While

contemporary photonic weighting technology can indeed facilitate weight value reconfiguration , there is a growing shift

towards considering programmable activation functions . Nevertheless, it is essential to note that existing neuromorphic

photonic architectures lack reconfiguration mechanisms for their linear neuron stages. Photonic Neural Networks (PNNs)

have mainly advanced within two primary architectural categories for implementing linear neural layers. The first category

involves incoherent or Wavelength-Division-Multiplexed (WDM) layouts, where each axon within the same neuron is

assigned a distinct wavelength . The second category centers on coherent interferometric schemes, in which a single

wavelength is utilized throughout the entire neuron, harnessing interference between coherent electrical fields to perform

weighted sum operations.

An innovative architecture is proposed in  that seamlessly integrates WDM and coherent photonics to empower

Programmable Photonic Neural Networks (PPNNs) with four distinct operational modes for linear neural layers. Building

upon their previously proposed dual-IQ coherent linear neuron architecture , which recently demonstrated remarkable

computational performance as a PIC with groundbreaking compute rates per axon , their next step is advancing single

neuron architecture. This approach involves harnessing multiple wavelength channels and corresponding WDM

De/Multiplexing (DE/MUX) structures to create multi-element and single-element fan-in (input) and weight stages for each

axon. Programmability is achieved by integrating Mach–Zehnder Interferometer (MZI) switches, which can dynamically

configure the connections between fan-in and weighting stages, offering the flexibility to define neural layer topologies

through software.

A comprehensive mathematical framework for this programmable neuromorphic architecture was established and delved

into a thorough analysis of potential performance limitations associated with using multiple wavelengths within the same

interferometric arrangement. These findings led to a straightforward mechanism to mitigate wavelength-dependent

behaviors in modulators and phase shifters at the fan-in and weighting stages. As a result, this programmable layout

consistently delivers exceptional performance across all four distinct operational modes, ensuring that supported neurons

always maintain a relative error rate lower than a specified threshold, provided that inter-channel crosstalk remains within

the typical range of values below a certain threshold.

Figure 6a  depicts the fundamental structure of the neural layer. Instead of a single Continuous Wave (CW) input

optical signal, M multiplexed CW signals are each centered at λ  and dedicated to an independent virtual neuron. The

input and weight modulators have been replaced by more intricate modulator banks, as illustrated in Figure 6c,e.

Software-controlled switches enclose these modulator banks. The multichannel input signal is divided into two portions in

the initial stage. One portion is directed to the bias branch, while the remaining part enters the Optical Linear Algebraic

Unit (OLAU). Within the OLAU, the signal undergoes further splitting, with equal power distribution achieved by a 1-to-N

splitter, an example of which is provided in Figure 6b. Subsequently, after being appropriately modulated by inputs (x )

and weighted by (w ), the signal is routed to the N-to-1 combiner, as depicted in Figure 6d . At this juncture, the

output signal interferes with the bias signal within a 3 dB X-coupler and is then directed to the DEMUX to generate the

outputs (y ). In the final step, each channel (m) undergoes algebraic addition of the weighted inputs with a designated

bias. This results in a total of M independent N-fan-in neurons.

Many cutting-edge programmable photonic circuits leverage the remarkable capabilities of Mach–Zehnder interferometers

(MZIs). MZIs offer precise control over power splitting ratios and relative phase shifts between input and output ports,

achieved by adjusting the phase-shifting control elements using either thermo-optic or electro-optic effects. Through the

strategic combination of multiple directional couplers and phase shifters within specific mesh configurations , MZI-

based architectures can perform a diverse array of linear transformations across various ports. When complemented by

optic-electro-optic nonlinearity  or optical-modulator-based reprogrammable nonlinearity , MZI-based architectures

have proven their mettle in tackling intricate machine learning tasks, boasting superior processing speeds. Nevertheless,

in the pursuit of significant phase tuning ranges, MZIs demand relatively high driving voltages , and the devices can

extend up to around 100 μm in length. In large-scale on-chip integrated circuits designed for complex applications, two

vital factors emerge as primary concerns: the device’s footprint and power consumption. A natural and promising avenue

is the adoption of resonant structures that enhance light-matter interactions, thereby reducing device footprint, driving

voltages, and overall power consumption .

[47] [86]

[23]

[90] [91]

[90]

[90]

[17]

[92]

[93]

[94]

[95]

[96]

[94]

m

n,m

n,m
[94]

m

[97][98]

[17] [99]

[100]

[100]



Among these, MRRs have garnered attention for their ability to program real-valued weights through a ‘broadcast-and-

weight’ protocol , resembling a continuous-time recurrent neural network . A notable advancement involves

programming weights at the interconnected waveguides between two MRRs using phase-change materials. This

innovation has led to the development of a photonic tensor core, serving as a robust dot-product engine . It is worth

mentioning that most prior proposals employing MRRs primarily relied on wavelength-division multiplexing for input

signals, and incoherently aggregated signals at the photodetectors. The potential of coherence networks, which harness

the wave nature of electromagnetic fields, holds promise for novel advancements in the design of optical neural networks

.

A groundbreaking coherent optical neural network architecture built upon MRRs is proposed in . This innovative

approach offers notable advantages regarding device footprint and energy efficiency compared to conventional optical

neural networks based on Mach–Zehnder interferometer (MZI) architectures. This architecture’s linear matrix

multiplication layer is fashioned by linking multiple linear units, each comprising a serially coupled double-RR  for

harmonizing signals from different ports and a single-RR for precise phase adjustments. Incorporating element-wise

activation at each port, this nonlinear unit is crafted using microring modulators and electrical signal processing, granting

the flexibility to program diverse nonlinear activation functions. Notably, the linear and nonlinear components presented in

this work maintain the coherency of input signals, thus constituting a complex-valued neural network . Moreover, the

inherent flexibility of this design enables the direct cascading of each layer on the same chip without the need for

intermediate digital-to-analogue conversions. This reduces latency and minimizes energy waste associated with signal

conversions. The input-output relationship in the designed architecture was illustrated through a transfer function, and

automatic differentiation was employed  to train the tunable parameters directly. The design and training algorithms

are not confined to the ring-based MRR design and can be adapted to various tunable systems. The network’s proficiency

in information processing tasks was showcased to provide a concrete example of its capabilities, such as functioning as

an Exclusive OR (XOR) gate and conducting handwritten digit recognition using the MNIST dataset .

In , ring-based programmable coherent optical neural network configuration is presented, as illustrated in Figure 6.

Figure 6f,g are dedicated to the fundamental elements responsible for executing the linear transformation, described by

the matrix 𝑊 . In contrast, Figure 6h represents the component running nonlinear activation functions. These components

are constructed using waveguides that are intricately coupled to RRs. It is noteworthy that in this design, all RRs maintain

a uniform diameter, while the separation distances between the rings and waveguides can be adjusted based on the

specific functionality they serve.

Furthermore, this design operates under continuous wave conditions at a single operating frequency, denoted as ω . This

characteristic enables us to exert precise control over the phase and amplitude of transmitted signals by adjusting the

refractive index of each component. In essence, this allows for fine-tuning the neural network’s performance . Figure
6i displays a waveguide’s transmission and phase responses of side-coupled with a ring as a function of phase detuning,

Δϕ. These responses are shown for both the critically coupled and over-coupled scenarios. In the case of over-coupling,

indicated by the components colored in green, these responses are utilized for phase-tuning purposes. On the other hand,

the nonlinear activation ring, highlighted in blue, requires critical coupling to achieve a more extensive amplitude tuning

range. Figure 6j presents an illustrative example of the transmission and phase response of the coupled double ring

employed as a signal-mixing component. The key parameters involved here are the ring-waveguide coupling coefficient

(𝑟𝑟𝑤) at 0.85, the ring-ring coupling coefficient (𝑟𝑟𝑟) at 0.987, and the single round trip amplitude transmission (𝑎) at 1 .

Figure 6. (a) An illustration of the PPNN. It consists of several components, including M laser diodes (LDs), a MUX, a 3dB

X-splitter, a bias branch denoted as W , and a reconfigurable Optical Linear Algebra Unit (OLAU) . The OLAU

comprises a 1-to-N splitting stage, input (X ) and weight (W ) modulator banks, and an N-to-1 combiner stage. The output

from the combiner stage interferes with the bias signal within a 3dB X-coupler and is then sent to a DEMUX. A closer

examination reveals details of (b) 1-to-N splitting and (d) its N-to-1 coupling stage , (c) view of the bias branch, which

includes wavelength-selective weights and phase modulators , (e) a closer look at an axon of the OLAU, which

consists of switches for signal routing and modulators for inputs (x ,m) and weights (w ,m) , layout of a Single Layer
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Coherent Optical Neural Network  (f) a tunable all-pass single RR functions as a phase tuning component, (g) tunable

serially-coupled double RRs are employed as signal mixing components between the ports, (h) the nonlinear activation

unit transforms input signal 𝑥𝑛 into 𝑓(𝑥𝑛), where 𝑓 represents a nonlinear function (with 𝑛 = 3 in this example). The black ring

within the nonlinear activation unit acts as a directional coupler, directing a portion of the optical energy (𝛼) for electrical

signal processing. The diode is a photodetector, and the blue ring modulates the signal. An electronic circuit (M)

processes the electronic output from the photodetector to generate a modulation signal for the right ring  (i) displays

the transmission and phase responses of a bus waveguide side-coupled with a ring, showcasing variations as a function

of phase detuning, Δϕ. Over-coupling, indicated in green, is employed for phase-tuning components. At the same time,

critical coupling, highlighted in blue, is crucial for achieving a larger amplitude tuning range in the nonlinear activation ring

, (j) provides an example transmission and phase response of the coupled double ring, used as a signal mixing

component .
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