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The 3D cell cultures allow cells to growth and interact between them and with the extracellular matrix in three
dimensions. This conforms a culture structure closer to physiological conditions than the cell monolayers (2D)
traditionally employed in cell biology, and it can be achieved by using extracellular matrix hydrogels derived from
decellularized tissues, bio-printed scaffolds made of different materials, or by forcing the cells to interact between
each other without physical support. 3D culture models provide a powerful tool to understand cell-to-cell
interactions when used in co-cultures, and to determine the involvement of extracellular vesicles as major key

interactors in cellular crosstalk.

3D culture extracellular vesicles tumoral cells cancer therapy

| 1. Introduction

In recent years, the number of scientific groups dedicated to the study of physiological phenomena using 3D
cultures has grown notably, and with it the amount of published information describing the cellular communication
mechanisms in this physiological processeslt. Released by all types of cells, extracellular vesicles (EVs) are an
important tool to study cell's biology and cell-to-cell communication. Cancer research is one of the main fields that
can benefit of 3D culturing research and, specifically, in the study of vesicle-mediated cell-to-cell crosstalk in
cancer progression 2. The study of cancer biology had evolved along the last years towards culture models that
reflect the biological complexity of tumoral cells and their interactions with the extracellular matrix. The reason is
that the traditional bidimensional (2D) cultures differ from tridimensional (3D) cultures in their morphological
characteristics, proliferation rate and degree of differentiation, the level of cell-to-cell interaction and cell-to-matrix,
as well as their resistance to drugs B4, However, the application of complex culture models to unravel the role of
EVs in cancer research has not been yet popularized due to the difficulties that this type of cultures presents, both
technically and in terms of cost. Nevertheless, several studies have highlighted the importance of 3D cultures in the

study of EVs in cancer research BJEIZ],

For many years, in vitro models have been based on 2D monolayers of immortalized human cancer-derived cell
lines. The popularization of 3D culturing has come with the observation that this type of cell cultures often retain
heterogeneity. This feature enables the study of tumour evolution. Moreover, 3D models offer advantages over
conventional monolayered cell cultures including preservation of the topology and cell-to-matrix interactions B2,
On the other hand, 3D cell culturing is also challenging, given the difficulties to stabilize the cultures, and the
requirement of specific material to start up and maintain the culture. In Table 1, we present a comparison between

2D and 3D cultures characteristics!l. In spite of the difficulties, 3D cultures become a great model to study the
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interplay between cancer and non-cancer cells in order to unveil biological mechanisms involved in cancers
initiation and progression 9. Spheroids are probably the type of 3D culture most commonly used. Spheroid
formation methodologies can be divided into two categories: scaffold-based models, either incorporating materials
which are components of the matrix (collagen, fibronectin, agarose, laminin, and gelatin) 2, or synthetic materials
that provide cell support 22 and scaffold-free models that comprise non-adherent and in suspension cells, which

are forced to aggregate and form spheroids 13!,

Table 1. Main advantages and limitations of the different cellular models in cancer research 1411131,

Model Advantages Limitations
2D ° Easy and cost effective « Reduced cell-to-cell interactions
A o Large amount of data available - Different sensitivity to drugs
onolayers o Reproducible cultures, easy to work for . . gs .
S . . o Loss of biological characteristics over time
downstream applications and imaging
Gel based o Cell-ECM interactions o Difficult to dispense cells

3D Cultures

Low-
attachment

plates

Microfluidic

systems

o Possibility to incorporate different factors
in the gel, extending release over time
o Uniform spheroids/organoids

o Simpler and cheaper when compared to
gel based systems
o Long-term culture

o Possible chemical gradients

o Control of fluid rates

o Convenient for multicellular cultures
controlling cell locations

Non-homogenous change of growth media
Difficult to retrieve cells and downstream
analysis

Time consuming
Low yield
Heterogeneous spheroids

Expensive commercial devices or not well-
characterized “in house” build devices
Fluidic problems related to bubbles and

clogging

One of the first applications of 3D cultures was the study of tumorigenesis. Typically, cells are cultured in a mouse
sarcoma-derived gel (i.e., Matrigel®) but there are alternatives such as human leiomyoma discs and their matrix
(Myogel). The latter has been commercialized for in vitro assays such as IncuCyte®, spheroid and sandwich

assays 16,

3D culture models grown in vitro from cancer stem directly or from primary tissues are a more evolved form of
organoids 7. The usage of primary tissues has an attractive potential for personalized medicine. Organoids
display a large number of features and functions of their original organs, such architecture and gene expression,
reason why they have a prospective potential for the cancer research but also in other fields. The combination of
organoids with the co-culture of multiple cells can mimic the tumour immune microenvironment, including key
features like immune checkpoint 28, Organoids derived from different mouse or human tumours have now been

widely adopted to investigate different types of cancer. Moreover, by culturing organoids in proper media
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conditions, they could serve as a model of several subtypes of diseases 9. Several other models such as

prostate, brain or kidney organoids have been stablished 22,

In addition to organoids, other kinds of 3D cultures have been developed. 3D bioprinting can be defined as a layer-
by-layer deposition of biomaterial, such as tissue spheroids, cell pellets, microcarriers, decellularized extracellular
matrix, and cell-laden hydrogels, in a well-defined structure to generate viable 3D cultures. In the last decade, the
bioprinting technologies have undergone remarkable advancements 2. Current trends utilizing these scaffold
technologies aim at capturing more of the micro-environmental cues than other model systems [2223] The
scaffolds may act as a surrogate for the missing extracellular microenvironment (ECM), representing the available
space of tumour tissue, providing the physical support for cell growth, adhesion, and proliferation, and causing the

cells to form an appropriate spatial distribution and cell-cell or cell-ECM interaction 2.

A wide range of techniques are utilized to generate different scaffolds, including solvent casting/particulate
leaching, freeze-drying, phase inversion, electrospinning, stereolithography, selective laser sintering, shape
deposition manufacturing, 3D printing, robotic microassembly, and fused deposition modelling 24. Among these
techniques, freeze-drying, phase inversion, and fibre electrospinning are utilized most of the times. Typical
materials used for tumour cells 3D culture are a laminin-rich basement membrane extract gelatin (for instance
Matrigel, Myogel or Cultrex BME) 23 silk fibroin proteins [28, hyaluronic acid &, collagen [28], or decellularized
material 2289 Scaffold-based 3D cell culture, using a biological basement membrane, captures many aspects of
the spatial cues (cell-to-cell communication, cell-to-matrix adhesion, and physical characteristics) and provides a
unique compromise between complexity and practicality 2. The choice of a biological scaffold is not simply to
deliver an anchorage site for cells but also to provide a complex structure enabling communication linked to cell
behaviour and function. The formation of 3D structures within the culture also reproduces aspects of the nutrient
and oxygen gradients found across in vivo tumours. It should be considered that those 3D scaffolds can be used
not only to simulate the microenvironment but alto to assess drug research. Recently publications have showed the
ability of decellularized ECM materials to encapsulate and controlled delivery of different drugs such as
dexamethasone 32 or doxorubicin B3, Therefore, 3D scaffold can have drug-carrier functions in therapeutic

applications related to testing drugs and in predicting treatment efficacies.

| 2. 3D cultures and extracellular vesicles

There are different 3D strategies employed to study the different roles of extracellular vesicles in cancer. The
choice of a specific model depends on the research question aimed to solve; hence, there are different model

options to study of the role of EVs in tumorigenicity processes (Figure 1) 1,
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Bioprinted scaffolds to produce
Bioreactors for scalable EV production| functional EVs

Figure 1. Schematic overview of the most popularized 3D culture techniques, and the main assays regarding
extracellular vesicles (EVs) applications to the study of tumours biology, use of EVs as therapeutic agents, study of

tumorigenesis and cell-to-cell crosstalk.

Since the first descriptions of EVs and their different types, it has been reported that tumoral cells secrete vesicles.
These vesicles participate in the cellular cross-talk with the cellular matrix 24 and cancer cells are rather effective
in vesicular-mediated intercellular transfer 3. Actually, this transfer is a requirement of tumoral cells to stablish a
connection with the surrounding matrix and actively regulate processes involved in cancer progression and
autocrine/paracrine oncogenesis. Indeed, EVs play an important role in reprogramming stromal cells, modulating
the immune system, and promoting angiogenesis (reviewed in 8)). Moreover, the dependency of tumours on

vesicular communication also concerns the preparation of an extracellular niche for metastasis 7138139,

In either cancer research or EVs field, 3D models have already contributed to gain knowledge in pathogenesis,
diagnosis and cell-to-cell communication. As mentioned in the introduction, 3D cultures reflect the in vivo biological
complexity and their interactions with the extracellular matrix. They are already an appealing asset to implement in
research bottom-up approaches as an intermediate step between monolayer in vitro experiments and in vivo

experiments.
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