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Signaling molecules act as the links and bridges between endophytes and host plants. The recognition of endophytes and

host plants, the regulation of host plant growth and development, and the synthesis of secondary metabolites are not

separated by the participation of signaling molecules.
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1. Introduction

Secondary metabolites of higher plants are the main source of many natural medicines, and the plant origins of which are

gradually occupying a dominant position in the field of medicine and healthcare on a global scale. Among these chemicals

are ginsenosides , tanshinones , vinblastine , camptothecin , paclitaxel , and others with anti-fatigue, anti-blood

pressure, anti-thrombotic, and anti-tumor properties, which serve as a foundation for novel medications development.

However, the majority of these natural active components have distinct chemical structures, which means artificial

synthesis to directly replace natural plant resources is difficult. The existing single extraction and separation method is far

from satisfying the complex and diversified extraction of natural active compounds in medicinal plants, resulting in

resource waste. In addition, the wave of economic development has also brought about the destruction of wild medicinal

resources and unplanned and unregulated exploitation. This has accelerated the formation of the global shortage of

herbal resources.

However, after medicinal plants are invaded by specific environmental microorganisms, they establish symbiotic

relationships including partial symbiosis and mutualistic symbiosis, which was been accompanied by in-depth

understanding and exploration of medicinal plant microbiota in recent years. Symbiosis includes offset symbiosis and

mutualism. Endophytic bacteria and host plants have evolved a comparatively robust equilibrium maintenance symbiosis

mechanism through ongoing synergistic evolution and balanced confrontation . In the symbiotic system involving

endophytic bacteria, the convenient generation of secondary metabolites of medicinal plants fully reflects the

characteristics of high yield, rapid generation, high plasticity, convenient operation, and mild reaction. Therefore,

endophytic bacteria act as a special "inducer" signal to regulate plant growth and metabolism  and biotic and abiotic

resistance  and to induce specific secondary metabolites  in a mutualistic system with plants. The signaling molecules

such as organic molecules and signaling hormones in the symbiotic system are also key to the processes of endophytic

bacteria recruitment, infestation, colonization , signal integration , and regulation of plant secondary metabolite

synthesis. 

2. Signaling Molecules Involved in the Interactions between Endophytic
Bacteria and Medicinal Plants

Endophytes and host plants have formed a unique symbiotic system under long-term symbiotic synergy, becoming a

functional symbiosis with diverse structures, complex composition, and dynamic change. The orderly operation of various

signaling molecules and symbiotic systems provides a basis for subsequent research on the synthesis pathways of

secondary metabolites in medicinal plants. Plants recognize endophytes through selective metabolic signals to restrict

other microorganisms from entering the plant. After initiation of intracellular symbiotic signaling pathways, endophytes

successfully colonize host plants.

2.1. Interaction of Metabolic Signaling Molecules in Endophytic Bacteria and Medicinal Plants

Symbiosis is a complex nutrient environment. In a symbiotic system, many chemicals can be used as signals to recruit

and identify endophytic bacteria. These metabolites generally include (i) nutrients available only to specific
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microorganisms, (ii) antibacterial substances toxic to some microorganisms, and (iii) a metabolite that attracts specific

microorganisms. For example, organic acids such as citric acid, malic acid, fumaric acid, and salicylic acid have been

shown to play important roles as nutrients in the recruitment of endophytic bacteria . Triterpenoids are another large

and diverse group of plant metabolic nutrients that mediate the establishment of symbiotic systems by promoting and

limiting the growth of endophytic bacteria . Similarly, plants may produce a wide range of antimicrobial substances, but

the regulatory mechanisms of how these molecules allow endophytic bacteria to proliferate while resisting pathogenic

bacteria have not been fully described in studies. Plant-derived coumarins have antimicrobial activity against some

pathogenic bacteria, but not against endophytic bacteria . Similarly, rhizobacteria have evolved resistance to the toxic

structural mimic of arginine (cotinine) produced by legumes, thus allowing proliferation in the inter-rhizosphere of legumes

. These examples show that plants can use antimicrobial products to select specific endophytes while excluding other

microorganisms. Plant-secreted metabolites can also serve as signals used by hosts in symbiotic systems to attract

specific endophytic bacteria. Nitrogen-fixing rhizobacteria can sense the presence of plant flavonoids through bacterial

regulators that biosynthesize in conjunction with Nod factors ; the phytohormone strigolactone can trigger the

germination of mycorrhizal (AM) fungal spores, thus signaling the presence of a potential plant host . Symbionts can

also use the presence of plant metabolites, including polyamines , amino acids, organic acids, or sugars , to indicate

the presence of a plant host. Thus, the secretion of induced signals such as nutrients, antimicrobial substances, and

metabolites provides the basis for plants to invoke only beneficial endophytes in a complex microbiota.The release of

plant metabolic signals may be a major determinant of the formation of specific symbiotic systems between host plants

and endophytes.

2.2. Receptor Signaling Molecules in the Interactions between Endophytic Bacteria and Medicinal
Plants

Endophytic bacteria form a symbiosis with the host plant after successfully competing for nutrients in the host and

surviving the attack of host antimicrobial metabolites. Plant receptors need to sense and integrate multiple signaling cues

to successfully recognize the symbiont and determine the pathway to initiate symbiosis. Plant genomes encode hundreds

of structure-specific membrane-associated pattern recognition receptors (PRRs)  to specifically recognize microbial-

associated molecular patterns (MAMP). MAMPs that play a role in symbiotic pathways include chitosan, bacterial

extracellular polysaccharides (EPS) , lipopolysaccharides (LPS) , and various protein components. In addition to

this, endophytic bacteria have evolved effectors that can also act as receptor signaling molecules involved in the

symbiotic pathway between endophytes and plants. The symbiosis between rhizobia and legumes begins when rhizobia

secrete lipid chitooligosaccharides (LCO) and release Nod factors . Both the effector and the host plant have multiple

LysM structural domains, and the LysM structural domain receptors of the host plant need to recognize the correct Nod

factor separately, regulating parallel signaling pathways . For example, Tribulus Terrestris NFP and LYK3 recognize the

non-reducing and reducing ends of Nod factors, respectively , and initiate the signaling pathways of NFP and LYK2 .

In summary, the symbiont signal can be selectively, and with high affinity, delivered to downstream intracellular signaling

molecules through successful recognition of multiple receptors’ signaling molecules by host plants for MAMP signaling

and effector signaling of endophytes, and transduction of invasion colonization signals by endophytes (schematized in

Table 1).

Table 1. Signal molecules and their sources in the interaction between endophytes and medicinal plants.
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Source Action Category Signal Molecule Strain (Genus) Reference

Metabolic signal
molecules

Nutrients

Citric acid Rhizoctonia

Malic acid Bacillus subtilis FB17

Fumaric acid Pseudomonas fluorescens

Succinic acid Bacillus amylolyticus

Antibacterial
substances

Coumarin Pseudomonas

Concanavaline Nitrogenous Rhizobium

Specific products
Triterpene Endophytic flora

Salicylic acid Endophytic flora

Metabolites

Flavonoid Nitrogenous Rhizobium

Unicornolactone Arbuscular mycorrhiza

Polyamine Pseudomonas

Amino acid Nitrogenous Rhizobium

Organic acid Nitrogenous Rhizobium

Sugar Nitrogenous Rhizobium

Receptor Signal
Molecules Conservative MAMP

Extracellular
polysaccharide Nitrogenous Rhizobium

Lipopolysaccharide Nitrogenous Rhizobium

Cell wall polysaccharide Verticillium dahuricum

Phospholipid protein Phytophthora camphora

Ribosomal protein Phytophthora cryptogea

Intracellular signal
molecule

Nod factor LCO Laccaria bicolor

Second
Messenger

Ca Nitrogenous Rhizobium

NO Soybean Stalk Rot
Pathogen

ROS E.festucae

Hormone
molecule

JA Epichloë gansuensis

SA Penicillium citri
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