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The interaction of the cellular environment surrounding the tumor plays a relevant role in hepatocellular carcinoma (HCC)

pathogenesis. The tumor microenvironment is directly implicated in the modulation of liver fibrosis, the process of

hepatocarcinogenesis, the epithelial-mesenchymal transition (EMT), invasion, and metastasis. Besides liver cancer cells,

several cell types participate in the tumor progression in the liver. 
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1. Hepatic Stellate Cells

Hepatic stellate cells (HSCs) are major components of liver connective tissue. They are localized in the basolateral

surface of hepatocytes and the anti-luminal side of sinusoidal cells . HSCs are in charge of vitamin A storage, synthesis

of matrix metalloproteinases (MMPs) and extracellular matrix components (ECM, collagen), release of cytokines (IL-6 and

IL-1β), defensin-1, chemokines (CCL5, CCL2), and growth factors (TGF-α/β, EGF, PDGF, bFGF) , . Normally, HSCs

are in a quiescent state. Upon liver injury, they become activated, their cytoskeleton becomes remodeled through an

increased expression of alpha-smooth muscle actin (α-SMA), and there is also a rise in cytokines, ECM components, and

growth factors production . In the activated state, HSCs transdifferentiate into myofibroblast-like cells. This phenotype

makes them more contractile, so they can infiltrate the hepatocellular carcinoma (HCC) stroma and localize around

fibrous septa, sinusoids, and capsules , .

Conditioned media from tumoral hepatocytes has been found to increase the proliferation of rat HSCs and induce the

expression of HSCs’ activation markers , . Similarly, another study demonstrated that collected media from HSCs

potentiated the tumorigenic capacity of HCC cancer cell lines . The co-culture of hepatoma cells and activated HSCs

also revealed the activation of genes related to inflammation, chemotaxis, angiogenesis, and metalloproteinase from

microarray analysis data , . Regarding in vivo studies, the co-implantation of HCC and HSCs cells in nude mice

increased tumor growth via NF-κB and extracellular signal regulated kinase (ERK) pathways activation , . In this

sense, previous work has showed that angiogenin was responsible for the crosstalk between HCC and HSCs cells both in

vitro and in mice models .

HSCs are also involved in the promotion of angiogenesis in HCC. Diverse mechanisms are responsible for this, among

them the secretion of angiopoietin-1  or IL-8 . Moreover, PDGF secreted by tumor and endothelial cells has been

described as attracting HSCs, while at the same time, HSCs secrete VEGF, thus promoting angiogenesis .

Several studies have pointed out that the secretion of IL-6 by HSCs may promote HCC progression , . In an HCC

murine model with obesity, insulin resistance, and dyslipidemia, fatty acid binding protein 4 (FABP4) was enriched in intra-

tumoral HSCs, contributing to hepatocarcinogenesis . The co-culture of HSCs with HCC cells demonstrated that the

overexpression of miR-1246 secreted by HSCs or the silencing of its target RORα increased proliferation, invasion, and

metastasis of HCC cells, with the involvement of the Wnt/β-catenin pathway .

HSCs have also been described as promoting tumor chemoresistance. The laminin-332/α3 integrin axis and the

ubiquitination of focal adhesion kinase (FAK) by HSCs were demonstrated to be involved in sorafenib chemoresistance

. In addition, FGF9, expressed only by HSCs, promoted the tumorigenic capacity of HCC cells and the resistance to

sorafenib, and FGF9 overexpression was associated with poor prognosis in patients with HCC . Interestingly, the

tyrosine kinase AXL, interesting target in cancer therapy, is increased in activated HSCs  and in dietary models of liver

fibrosis .
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2. Cancer-Associated Fibroblasts

Fibroblasts are present in the fibrillar matrix of connective tissue. They are responsible for wound healing, formation of

extracellular matrix (ECM), tissue maturation, and the inflammatory response . Cancer-associated fibroblasts (CAFs)

are a sub-group of fibroblasts that are activated and implicated in cancer progression. Although CAFs arise from normal

fibroblasts, CAFs can also derive from epithelial cells, endothelial cells, smooth muscle cells, bone marrow-derived

progenitor cells, and pre-adipocytes . Additionally, HCC tumors frequently develop in a cirrhotic liver in which there is a

great amount of activated fibroblasts . Therefore, CAFs may contribute to HCC tumor progression by producing growth

factors (EGF, FGF, HGF, and TGF-β), chemokines (SDF-1), cytokines (IL-6), and metalloproteinases (MMP-3 and MMP-9)

, , . In addition, there is a growing amount of evidence showing that the crosstalk between CAFs and HCC tumors

could be mediated by miRNAs contained in exosomes. For example, low miR-150-3p levels secreted by CAFs have been

discovered to be involved in HCC migration and invasiveness as well as poor clinical outcome . Interestingly, the

upregulation of mirR-335-5p by CAFs inhibited HCC tumor cells proliferation in vitro and in vivo . Moreover, HCC tumor

cells were found to induce the conversion of HSCs into CAFs through the secretion of miR-21, which promoted cancer

progression via the secretion of the angiogenic factors VEGF, MMP2, MMP9, bFGF and TGF-β .

3. Tumor-Associated Macrophages

Macrophages around the tumor site are called tumor-associated macrophages (TAMs). Macrophages can display the M1

(classic) or M2 (alternative) phenotype depending on their tumor-suppressing or tumor-promoting role . M1

macrophages produce Th1-cytokines, such as IFN-γ, and are activated by LPS and other microbial antigens. They exhibit

high antigen-presenting capacity and increased cytotoxic activity, thereby producing reactive oxygen species (ROS) .

On the contrary, M2 macrophages are polarized by Th2-type cytokines IL-4, IL-13, glucocorticoids, and TGF-β. Their

antigen-presenting capacity is low. M2 macrophages decrease inflammation, suppress the adaptive immune system, and

promote tumor progression, angiogenesis, and tissue repair .

In HCC, M2 macrophages have been found to promote tumor progression and metastasis with the involvement of

glypican-3, a member of the glypican family of heparin-sulfate proteoglycans reported to be highly expressed in the

majority (>70%) of HCCs . In addition, TGF-β1 secretion by TAMs promoted cancer progression and EMT in HCC ,

, and moreover, the TAM-production of IL-6, via STAT3, also promoted stemness in HCC . Moreover, in a murine

model of HCC, intra-tumoral macrophages expressing MMP-9 were involved in ECM remodeling, thus favoring tumor

progression , while, in another study, the presence of TAMs correlated with tumor vascularity, pointing towards the

ability of TAMs to promote angiogenesis .

It has been shown, in Hepa1-6 HCC tumors, that, in the early phase of tumor development, infiltrated macrophages

displayed a tumor-suppressing phenotype, while, at advanced stages, the TAM population increases and is associated

with tumor progression . Thus, it is becoming apparent that macrophage polarization plays a crucial role in the initiation

of liver diseases, and its role in HCC needs to be further clarified, particularly since it may affect immunotherapy efficacy

. At the same time, tumor cells have been found to release Wnt ligands that promoted M2 polarization of macrophages

and, in turn, promoted tumor growth, invasion, and immunosuppression in HCC . In this regard, treatment of HCC with

sorafenib has been shown to induce the repolarization of alternative macrophages to M1 phenotype through IGF-1

signaling .

Additionally, in HCC human samples, TAM infiltration was linked with PD-L1 overexpression . Although M1

macrophages have been considered to exert an anti-tumor role, M1 macrophages my promote PD-L1 expression in HCC

tumor cells, highlighting the potential role of M1 macrophages in tumor promotion through IL-1β pathway . In fact,

Kupffer cells, resident macrophages in the liver, have been reported to mediate tumor growth in HCC by producing PD-L1

that interacts with PD-1 receptor in CD8  T cells, impairing CD8  T cell response . In addition, Kupffer cells produce

osteopontin, which is involved in inflammation, tumor progression, and metastasis .

4. Endothelial Cells

Endothelial cells (ECs) are present in the interior face of blood vessels. Other cells, such as HSCs, participate in

controlling the size and elasticity of liver vessels . The interactions of ECs with the ECM and basement membrane

proteins play a role in proliferation, stability, and neoangiogenesis. When the basement membrane degrades, ECs

become exposed to collagen, which triggers the formation of new blood vessels . Neovascularization favors tumor

proliferation, invasion, and metastasis, since the new blood supply provides oxygen and nutrients to the tumor . Tumor

blood vessels have structural abnormality and increased permeability. ECs carry angiogenic receptors, for instance
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VEGFR, EGFR, PDGFR, and CXCR . Additionally, hypoxia is a known driver of tumor angiogenesis. Many studies

conducted in HCC preclinical models have shown that hypoxia-inducible factor (HIF) proteins led to the activation of

VEGF, which promotes angiogenesis , , . VEGF and VEGFRs are crucial for HCC development , . The binding

of VEGF ligands to their receptors elicits downstream phosphorylation that results in EC proliferation and the formation of

new branches of blood vessels . High VEGF levels in serum have been found to be associated with bad prognosis in

HCC patients who underwent surgical resection , since sVEGF concentration has been showed to correlate with

angiogenesis, invasion, and metastasis of HCC . The interaction of platelet-derived growth factors (PDGF) with PDGF

receptors (PDGFR) triggers the activation of the same signaling pathways as the binding of VEGF and VEGFRs not only

in ECs but also in fibroblasts, smooth muscle cells, and HSCs . In this sense, PDGFRα expression was associated with

microvascular invasion .

Additionally, fibroblast growth factor (FGF) and fibroblast growth factor receptors (FGFR) also regulate cell growth and

angiogenesis . Basic fibroblast growth factor (bFGF) fostered VEGF expression and its synergistic effect contributed to

HCC development and neovascularization . Of interest, angiopoietin-1 (Ang-1) and 2 (Ang-2) bind to their receptor,

Tie2, to stimulate angiogenesis . Ang-1 and Ang-2 expression was detected in hepatoma, HSCs, ECs, and smooth

muscle cells, while Tie2 receptor was only identified in ECs, HSCs, smooth muscle cells, and monocytes , . Ang-2

serum levels were high in patients with cirrhosis and HCC , being a prognosis marker . Ang-2 exhibited a synergistic

effect with VEGF in the development of angiogenesis in HCC in mice through the activation of MMP-2 and MMP-9 .

Ang-2 was included in a five-gene signature that effectively predicted HCC rapid growth . As other pro-angiogenic

factors, Ang-2 also played a role in the promotion of HCC invasion and metastasis .

5. Tumor-Associated Cells of the Innate Immune System

Innate immune mechanisms may support or neutralize tumor-related immune activation, being recognized drivers of

disease progression in the liver, particularly during conditions such as fibrosis or cirrhosis prior to HCC. Exhaustive

research has been developed to delineate the immunological steps involved in the initiation and evolution of liver cancer.

During HCC progression, several studies analyzing the response to immunotherapy have leaded to conflicting results,

probably due to the complex and only partially known interactions between specific immune cells, tumor cells, and the

different cells that configure the tumor microenvironment. For reviews on the subject, see , .

Forgotten during years, tumor-infiltrating immune cells in the HCC have been recently evaluated and characterized .

For many solid tumors, including HCC, different relationships between immune cell populations and therapy efficacy and

prognosis have been suggested. While the complete impact of the tumor immune environment is still to be determined,

myeloid cells including TAMs and myeloid-derived suppressor cells (MDSCs) are abundantly present in the HCC

microenvironment being frequently associated with poor prognosis. In general, myeloid cells in HCC play a very active

role in promoting tumor initiation, development, angiogenesis, metastasis, and even therapeutic resistance . In

contrast, increasing numbers of infiltrating T-effector cells are habitually linked with a good prognosis . Generally, a pro-

inflammatory HCC ambient with infiltrating natural killer (NK) cells, and CD8-expressing T cells are considered to be

positive and associated with good clinical outcomes in numerous tumor types . NK cells play a central role in hepatic

immunity, accounting for 25–50% of the total number of liver lymphocytes. Both circulating and tumor infiltrating NK cells

are positively correlated with patient survival benefit in HCC , contrary to other immune cells, such as MDSCs and

regulatory T cells, which seem to disrupt the immune control of the HCC .
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