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Gastrointestinal (GI) tract diseases are on the rise in the world. These diseases can have fatal consequences if not

diagnosed in the initial stages. WCE (wireless capsule endoscopy) is the advanced technology used to inspect

gastrointestinal diseases such as ulcerative-colitis, polyps, esophagitis, and ulcers. WCE produces thousands of

frames for a single patient’s procedure for which manual examination is tiresome, time-consuming, and prone to

error; therefore, an automated procedure is needed.

gastrointestinal disease  deep learning  WCE images

1. Introduction

The digestive system is affected by gastrointestinal (GI) tract diseases. Medical imaging is a key component of

these diseases’ diagnoses. Huge image data is difficult for radiologists and medical professionals to process, which

makes it susceptible to inaccurate medical assessment . The most prevalent digestive system disorders include

ulcerative colitis, esophagitis, ulcers, and polyps that can develop into colorectal cancer. One of the leading causes

of death worldwide is colorectal cancer .

According to a survey of the disease, 11% of women and 26% of men worldwide have been diagnosed with

colorectal cancer . In the US, 338,090 new cases of colorectal cancer were detected in 2021, with a 44%

increase in fatalities . Each year, 0.7 million new cases of illnesses are recorded globally . Due to the high

death rate, early diagnosis is exceedingly challenging. The development of ulcers in the GI tract is a serious

sickness that goes hand in hand with GI malignant growth. As  reported, the most notable yearly predominance

of ulcers retained in Spain was 141.9 per 100,000 individuals and the least was 57.75 in Sweden.

Many lesions are overlooked during a typical endoscopic examination because of the presence of feces and the

organs’ complex architecture. The rate of missing polyps is very high, ranging from 21.4% to 26.8% , even when

the bowel is cleansed to facilitate the diagnosis of cancer or its precursor lesions. Furthermore, it can be difficult to

identify lesions because of their similarities between classes. A new treatment called wireless capsule endoscopy

(WCE)  allows medical professionals to view the stomach, which was previously exceedingly difficult to access

via standard endoscopy. In WCE, patients ingest a camera-encased capsule that records several images as it

travels through the GI system. The experts (experienced gastroenterologists) stitch these images together to

create a film, which is then analyzed to look for deformations. However, this approach has some drawbacks,

including time requirements and a dearth of expertise. The primary issue with this procedure is the time

commitment required for a manual diagnostic. Additionally, the poor contrast in the WCE images makes it difficult
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to see an ulcer properly . As a result, there is a possibility that a doctor will overlook the ulcer throughout the

detection phase. Another issue that arises during a diagnosis with the naked eye has to do with the similarity of

color, texture, and shape variations .

Different techniques for the diagnosis of colorectal cancer and its precursor lesions utilizing the WCE images have

been developed by numerous researchers . These techniques have some basic steps such as contrast

enhancement and noise removal from the image, followed by segmentation of diseased area within an image,

important features extraction, and finally, classification of a specified class. An integral part of a computerized

process is contrast enhancement. The primary goal of this phase is to increase an infected region’s intensity range

to improve accuracy and retrieve pertinent features . The resultant images are then passed into the

segmentation phase for the detection of disease and subsequently for features extraction, but this step faces

several difficulties (such as the alteration in the topology of the infected lesion and the similarity in color between

the healthy and infected parts) that lower the segmentation accuracy. Later, a disease can be incorrectly classified

into an inappropriate class as a result of the decrease in segmentation accuracy.

Recently, the performance of a deep convolutional neural network (CNN) for the identification and classification of

medical infections has increased  as they outperformed traditional machine learning models. These

techniques extracted features using pre-trained CNN models, which were then optimized for features. Due to

memory and time constraints, the pre-trained CNN models are trained via transfer learning (TL). Most of the

researchers are focusing more on using the complex CNN models as well as fusing multiple models and optimizing

the features for achieving better accuracy. As WCE images are subject to several challenges and limitations, work

on image improvement is an area upon which focus is needed. The quality of WCE images is not good because of

volume and power limitations. As a result, WCE images exhibit weak contrast . Furthermore, the great similarity

between normal and abnormal frames further complicates the process of disease classification .

2. Gastrointestinal Disease Classification

The use of medical imaging to identify diseases has gained popularity in recent years, particularly in the field of the

gastrointestinal system. Another active field of research is the classification of digestive illnesses. Although

machine learning algorithms have demonstrated amazing performance in the literature , CNN algorithms

outperform ML techniques and produce superior results .

Several research  works have examined the detection of abnormal frames in capsule

endoscopy images, including the detection of tumors, Crohn’s disease, polyp, hemorrhages, ulcers,

lymphangiectasia, and other intestinal lesions. Existing techniques often start with feature extraction and then apply

a detection technique. The detection techniques either use multi-label approaches to find and classify various types

of abnormality  or distinguish between frames with a lesion and normal ones . These methods frequently

extract features from the images’ texture and morphological analysis, statistical feature analysis, and color

descriptors. These techniques either use region-based  or pixel-based  methodologies. Artificial neural

networks (ANNs) and support vector machines (SVMs) are the two commonly utilized classification techniques in
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the literature . Many other studies related to gastrointestinal diseases such as polyp, colon, and capsule

endoscopy have been conducted in the literature .

DL models such as ResNet-50, VGG16, and Inception-V3 were used by Lee et al.  to categorize normal and

ulcer GI pictures. Resnet-50 outperformed the other deep networks using this technique. A saliency-based strategy

was presented by Khan et al.  to segment GI diseases, whereas DL architecture is employed for classification.

They combined a YIQ color space with an HSI color space, which was then fed into a segmentation method based

on contours. An automated technique for identifying an ulcer from the WCE frames was introduced by Yuan et al.

. To begin with, a saliency technique based on superpixels is used to define the boundaries of the ulcer zone.

The level-by-level texture and color properties are then computed and combined to produce the final saliency map.

Then, to achieve a recognition rate of 92.65%, the saliency max-pooling (SMP) and locality-constrained linear

coding (LLC) techniques are combined. With a dataset of 854 photos, the authors of  proposed the VGGNet

model, which was built on a CNN (convolutional neural network), to accurately identify gastrointestinal ulcers, even

though these tests used images from a standard endoscopy. The dataset used in  comprised 5360 WCE images

with ulcers and erosions and only 440 normal images; the authors created a model based on a CNN. This

method’s detection accuracy was 90.8%. An attention-based DL architecture for classifying and localizing stomach

diseases from WCE images was presented by Jain et al. . They started by effectively classifying stomach

illnesses using CNN. Later, for the localization of contaminated areas, they combined Grad-CAM++ and a unique

SegNet. On a KID dataset, the proposed technique was tested, and it showed enhanced accuracy. For WCE video

summarization, Lan et al.  developed a combination of unsupervised DL techniques. They employed several

networks, including LSTM and autoencoder, among others. This research’s major goal was to assist medical

professionals in their examination of the complete WCE videos. In , a gastrointestinal disease classification

framework is proposed in which deep features are selected and fused from two deep models, i.e., ResNet-50 and

ResNet-152. Subsequently, the features were optimized and it achieved 96.43% classification performance. In

another work, , alimentary diseases such as Barret, Polyp, and Esophagitis were classified by applying discrete

wavelet transform and CNN. This framework achieved a 96.65% accuracy on the Hyper Kvasir dataset.
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