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Whole-brain models are sets of equations that describe the dynamics and interactions between neural populations in

different brain regions. Most whole-brain models are built considering three basic elements: brain parcellation, anatomical

connectivity matrix, and local dynamics.
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1.Introduction

These models typically focus on the joint evolution of a set of key biophysical variables using systems of coupled

differential equations (although discrete time step models can also be used, as will be discussed below). These equations

can be built from knowledge concerning the biophysical mechanisms underlying different forms of brain activity, or as

phenomenological models chosen by the kind of dynamics they produce. Then, local dynamics are combined by in vivo

estimates of anatomical connectivity networks. In particular, fMRI, EEG, and MEG signals can be used to define the

statistical observables, diffusion tensor imaging (DTI) can provide information about the structural connectivity between

brain regions by means of whole-brain tractography, and positron emission tomography (PET) imaging can inform on

metabolism and produce receptor density maps for a given neuromodulator.

Most whole-brain models are structured around three basic elements:

Brain parcellation: A brain parcellation determines the number of regions and the spatial resolution at which the brain

dynamics take place. The parcellation may include cortical, sub-cortical, and cerebellar regions. Examples of well-

known parcellations are the Hagmann parcellation , and the automated anatomical labeling (AAL) atlas .

Anatomical connectivity matrix: This matrix defines the network of connections between brain regions. Most studies

are based on the human connectome, obtained by estimating the number of white-matter fibers connecting brain areas

from DTI data combined with probabilistic tractography . For control purposes, randomized versions of the

connectome (null hypothesis networks) may also be employed.

Local dynamics: The activity of each brain region is typically determined by the chosen local dynamics plus interaction

terms with other regions. A variety of approaches have been proposed to model whole-brain dynamics, including

cellular automata , the Ising spin model , autoregressive models , stochastic linear models , non-linear

oscillators , neural field theory , neural mass models , and dynamic mean-field models .

The first two items are guided by available experimental data. In contrast, the choice of local dynamics is usually driven by

the phenomena under study and the epistemological context at which the modeling effort takes place. The workflow

describing the construction of whole-brain models is illustrated in Figure 1. Because of this hybrid nature, whole-brain

models constructed following this process are sometimes called semi-empirical models. Whole-brain models can be

constructed from in-house code, or more easily from platforms, such as The Virtual Brain

(https://www.thevirtualbrain.org/tvb/zwei) .
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Figure 1. Workflow describing the construction of whole-brain models. First, model inputs are determined based on

anatomical connectivity, a brain parcellation (representing a certain coarse graining), and the local dynamics (left). Each

region defined by the parcellation is endowed with a specific connectivity profile and local dynamics. Then, the model can

be optimized to generate data as similar as possible to the brain activity observed during conscious wakefulness.

Generally, this similarity is determined by certain statistical properties of the empirical brain signals, which constitute the

target observable. The same or another observable is obtained from subjects during altered states of consciousness and

used again as the target of an optimization algorithm to infer model parameters. Following a given working hypothesis, the

model for wakeful consciousness can be perturbed in such a way that optimizes the similarity between the target

observable for the altered state of consciousness and the data generated by the model. In this way, a whole-brain model

for an altered state of consciousness can be used to test working hypotheses about its mechanistic underpinnings.

2. Examples

2.1. Dynamic Mean-Field (DMF) Model

In this approach, the neuronal activity in a given brain region is represented by a set of differential equations describing

the interaction between inhibitory and excitatory pools of neurons . The DMF presents three variables for each

population: the synaptic current, the firing rate, and the synaptic gating, where the excitatory coupling is mediated by

NMDA receptors and the inhibitory by gamma-aminobutyric acid (GABA)-A receptors. The interregional coupling is

considered excitatory-to-excitatory only, and a feedback inhibition control in the excitatory current equation is included .

The output variable of the model is the firing rate of the excitatory population that is then included in a nonlinear

hemodynamical model  to simulate the regional BOLD signals.

The key idea behind the mean-field approximation is to reduce the high-dimensional randomly interacting elements to a

system of elements treated as independent. Then, an average external field effectively replaces the interaction with all

other elements. Thus, this approach represents the average activity of an homogeneous population of neurons by the

activity of a single unit of this class, reducing in this way the dimensionality of the system. In spite of these

approximations, the dynamic mean field model incorporates a detailed biophysical description of the local dynamics,

which increases the interpretability of the model parameters.

2.2. Stuart-Landau Non-Linear Oscillator Model

This approach builds on the idea that neural activity can exhibit—under suitable conditions—self-sustained oscillations at

the population level . In this model, the dynamical behavior is represented by a non-linear oscillator with the

addition of Gaussian noise at the proximity of a Hopf bifurcation . By changing a single model parameter (i.e.,

bifurcation parameter) across a critical value, the model gives rise to three qualitatively different asymptotic behaviors:

harmonic oscillations, fixed point dynamics governed by noise, and intermittent complex oscillations when the bifurcation

parameter is close to the bifurcation (i.e., at dynamical criticality). Correspondingly, the model is determined by two

parameters: the bifurcation parameter of the Hopf bifurcation in the local dynamics, and the coupling strength factor that

scales the anatomical connectivity matrix. In contrast to the DMF model, coupled Stuart-Landau non-linear oscillators

constitute a phenomenological model, i.e., the model parameter does not map into any biophysically relevant variables. In

this case, the model is attractive due to its conceptual simplicity, which is given by its capacity to produce three

qualitatively different behaviors of interest by changing a single parameter. 
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3. How to Fit Whole-Brain Models to Neuroimaging Data?

Whole-brain models are tuned to reproduce specific features of brain activity. The way in which this is ensured is via

optimization of the free parameters in the local dynamics plus the coupling strength. Parameter values are usually

selected so that the model matches a certain statistical observable computed from the experimental data.

Since adding more free parameters increases the computational cost of the optimization procedure, it becomes critical to

choose parameters reflecting variables that are considered relevant, either from a general neurobiological perspective or

in the specific context of the altered state under investigation. Depending on the latter, the parameters could be divided

into groups that are allowed to change independently based on different criteria, including structural lesion maps, receptor

densities, local gene expression profiles, and parcellations that reflect the neural substrate of certain cognitive functions,

among others.

After choosing the parcellation, the equations governing the local dynamics and their interaction terms, the interregional

coupling given by the structural connectivity matrix, and selecting a criterion to constrain the dimensionality of the

parameter space. The last critical step is to define the observable which will be used to construct the target function for

the optimization procedure. As mentioned above, one possibility is to optimize the model to reproduce the statistics of

functional connectivity dynamics (FCD). Perhaps a more straightforward option is to optimize the “static” functional

connectivity matrix computed over the duration of the complete experiment, an approach followed by Refs. , among

others. Other observables related to the collective dynamics can be obtained from the synchrony and metastability, as

defined in the context of the Kuramoto model . In general, any meaningful computation summarizing the

spatiotemporal structure of a neuroimaging dataset constitutes a valid observable, with the adequate choice depending on

the scientific question and the altered state of consciousness under study.

Since different observables can be defined, reflecting both stationary and dynamic aspects of brain activity, a natural

question arises: is a given whole-brain model capable of simultaneously reproducing multiple observables within

reasonable accuracy? We consider this question to be very relevant, yet at the same time it has been comparatively

understudied.

Finally, some natural candidates for observables to be fitted by whole-brain models are precisely the high-level signatures

of consciousness put forward by theoretical predictions. The objective is to fit whole-brain models using these signatures

as target functions and then assess the biological plausibility of the optimal model parameters, which allows for the testing

of the consistency of these signatures from a bottom-up perspective. Alternatively, signatures of consciousness can be

computed from the model—initially fitted to other observables—and compared to the empirical results. Again, this

highlights the need to understand which kind of local dynamics allow the simultaneous reproduction of multiple

observables derived from experimental data.

4. Whole-Brain Models Applied to the Study of Consciousness

The available evidence suggests that states of consciousness are not determined by activity in individual brain areas, but

emerge as a global property of the brain, which in turn is shaped by its large-scale structural and functional organization

. According to this view, whole-brain models provide a fertile ground to explore how global signatures of different

states of consciousness emerge from local dynamics. This promise is already being met, as shown by several recent

articles .

Another interesting possibility is to assess the consequences of stimulation protocols that are impossible to apply in vivo.

An example is the Perturbative Integration Latency Index (PILI) , which measures the latency of the return to baseline

after a strong perturbation that generates dynamical changes detectable over long temporal scales (on the order of tens of

seconds). This in silico perturbative approach allows to systematically investigate how the response of brain activity upon

external perturbations is indicative of the state of consciousness, providing new mechanistic insights into the capacity of

the human brain to integrate and segregate information over different time scales.
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