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The automatic monitoring of activities in construction sites through the proper use of acoustic signals is a recent field of

research that is currently in continuous evolution. In particular, the use of techniques based on Convolutional Neural

Networks (CNNs) working on the spectrogram of the signal or its mel-scale variants was demonstrated to be quite

successful. However, the spectrogram has some limitations, which are due to the intrinsic trade-off between temporal and

spectral resolutions. In order to overcome these limitations, CNNs can employ the scalogram representation, as a proper

time–frequency representation of the audio signal.
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1. Introduction

In recent years significant research efforts have been made in the field of Environmental Sound Classification (ESC) ,

allowing significant results to be obtained in practical sound classification applications. This initiative has been enabled by

the use of Convolutional Neural Networks (CNNs), which allowed a superior performance in image processing problems

 to be obtained. In order to extend the use of CNNs to the field of audio processing, the audio input signal is usually

transformed into suitable bi-dimensional image-like representations, such as spectrograms, mel-scale spectrograms, and

other similar methods .

Recently, the approaches employed in ESC have been transferred to advancing the construction domain by converting

vision-based work monitoring and management systems into audio-based ones . In fact, audio-based systems not

only are more cost-effective than video-based ones, but they also work more effectively in a construction field when

sources are far from the light of sight of sensors, making these systems very flexible and appropriate for combining other

sensor-based applications or Artificial Intelligence (AI)-based technologies . Furthermore, the amount of memory and

data flow needed to handle audio data is much smaller than the one needed for video data. In addition, audio-based

systems outperform accelerometer-based ones since there is no need to place sensors onboard, thus promoting 360-

degree-based activity detection and surveillance without having an illumination issue .

Such audio-based systems can be successfully used as Automatic Construction Site Monitoring (ACSM) tools ,

which can represent an invaluable instrument for project managers to promptly identify severe and urgent problems in

fieldwork and quickly react to unexpected safety and hazard issues .

ACSM systems are usually implemented by exploiting both machine learning (ML) and deep learning (DL) techniques .

Specifically, several ML approaches, including Support Vector Machines (SVMs), the k-Nearest Neighbors (k-NN)

algorithm, the Multilayer Perceptron (MLP), random forests, Echo State Networks (ESN), and others, have already

demonstrated their effectiveness in properly performing activity identification and detection in a construction site .

However, DL approaches generally outperform ML-based solutions providing much improved results . It is expected that

DL techniques including CNNs, Deep Recurrent Neural Networks (DRNNs) implemented with the Long Short-Term

Memory (LSTM) cell, Deep Belief Networks (DBNs), Deep ESNs, and others can produce more suitable and qualified

performances than ML ones for robustly managing construction work and safety issues.

Approaches based on CNNs have demonstrated good flexibility and considerably convincing performance in these

applications. In fact, CNNs exhibit advanced accuracy in image classification . In order to meet the bi-dimensional

format of images, the audio waveform can be transformed into a bi-dimensional representation by a proper time–

frequency transformation. The main time–frequency representation used in audio applications is the spectrogram, i.e., the

squared magnitude of the Short Time Fourier Transform (STFT) . The spectrogram is very rich in peculiar
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information that can be successfully exploited by CNNs. Instead of using the STFT spectrogram, in audio processing, it is

very common to use some well-known variants, such as the constant-Q spectrogram, which uses a log-frequency

mapping, and the mel-scale spectrogram, which uses the mel-scale of frequency to better capture the intrinsic

characteristic of the human ear. Similarly, the Bark and/or ERB scales can be used, producing other variants of the

spectrogram .

Although the spectrogram representation and its variants provide an effective way to extract features from audio signals,

they entail some limitations due to the unavoidable trade-off between the time and frequency resolutions. Unfortunately, it

is hard to provide an adequate resolution in both domains: a shorter time window provides a better time resolution, but it

reduces the frequency resolution, while using longer time windows improves the frequency resolution but obtains a worse

time resolution. Even if some solutions have been proposed to mitigate such an unwanted effect (such as the time–

frequency reassignment and synchrosqueezing approach ), the problem can still affect the performance of deep

learning methods. Moreover, the issue is also complicated by the fact that sound information is usually available at

different time scales that cannot be captured by the STFT.

The scalogram was defined as the squared magnitude of the Continuous Wavelet Transform (CWT) . By overcoming

the intrinsic time–frequency trade-off, the scalogram is expected to offer an advanced and robust tool to improve the

overall accuracy and performance of ACSM systems. In addition, the wavelet transform allows to it work at different time

scales, which is a useful characteristic for the processing of audio data.

2. A Scalogram-Based CNN Approach for Audio Classification in
Construction Sites

In the digital era, great and increasing attention has been devoted to research on automated methods for real-time

monitoring of activities in construction sites . These modern approaches are able to offer better performance with

respect to the most traditional techniques, which are typically based on manual collection of on-site work data and human-

based construction project monitoring. In fact, these activities are typically time-consuming, inaccurate, costly, and labor-

intensive . In the last years, the literature related to applications of deep learning techniques to the construction

industry has been continuously increasing . In particular, many works have been published describing proper

exploitation of audio data .

The work of Cao et al. in  was one of the first attempts in this direction. They introduced an algorithm based on the

processing of acoustic data for the classification of four representative excavators. This approach is based on some

acoustic statistical features. Namely, for the first time the short frame energy ratio, concentration of spectrum amplitude

ratio, truncated energy range, and interval of pulse (i.e., the time interval between two consecutive peaks) were developed

in order to characterize acoustic signals. The obtained results were quite effective for this kind of source; however, no

other types of equipment were considered.

Paper  proposed the construction of a dataset of four classes of equipment and tested several ML classifiers. The

results obtained in this work were aligned to those shown in , which compared and assessed the accuracy of 17

classifiers on nine classes of equipment. These two papers work on both temporal and spectral features extracted from

audio signals. Similarly, Ref.  compared some ML approaches on five input classes by using a single in-pocket

smartphone, obtaining similar numerical results.

Akbal et al.  proposed an SVM classifier. After an iterative neighborhood component analysis selector chooses the

most significant features extracted from audio signals, this classifier produces an effective accuracy on two experimental

scenarios. Moreover, Kim et al.  proposed a sound localization framework for construction site monitoring able to work in

both indoor and outdoor scenarios.

Maccagno et al.  proposed a deep CNN-based approach for the classification of five pieces of construction site

machinery and equipment. This customized CNN is fed by the STFT spectrograms extracted from different-sized audio

chunks. Similarly, Sherafat et al.  proposed an approach for multiple-equipment activity recognition using CNNs, tested

on both synthetic and real-world equipment sound mixtures. Different from , this work implements a data augmentation

method to enlarge the used dataset. Moreover, this model uses a moving mode function to find the most frequent labels in

a period ranging from 0.5 to 2 s, which generates an acceptable output accuracy. The idea to join different output labels

inside a short time period was also exploited in , which implement a Deep Belief Network (DBN) classifier and an

Echo State Network (ESN), respectively.
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Kim et al. in  applied CNNs and RNNs to spectrograms for monitoring concrete pouring work in construction sites, while

Xiong et al. in  used a convolutional RNN (CRNN) for activity monitoring. Moreover, Peng et al. in  used a similar DL

approach for a denoising application in construction sites. On the other hand, Akbal et al.  proposed an approach,

called DesPatNet25, which extracts 25 feature vectors from audio signals by using the data encryption standard cipher

and adopts a k-NN and an SVM classifier to identify seven classes.

Additionally, some other approaches also fused information from two different modalities. For example, the work in 

used an SVM classifier by combining both auditory and kinematics features, showing an improvement of about 5% when

compared to the use of only individual sources of data. Similarly, Ref.  exploited visual and kinematic features, while 

utilized location data from a GPS and a vision-based model to detect construction equipment. Finally, a multimodal audio–

video approach was presented in , based on the use of different correlations of visual and auditory features, which has

shown an overall improvement in detection performance.

In addition, Elelu et al. in  exploited CNN architectures to automatically detect collision hazards between construction

equipment. Similarly, the work in  presented a critical review of recent DL approaches for fully embracing construction

workers’ awareness of hazardous situations in construction sites by the employment of auditory systems.

Most of the DL approaches described in this section work on the spectrogram extracted from audio signals or some

variants, such as the mel-scaled spectrogram. However, the idea of exploiting different time scales (which is an intrinsic

property of audio signals) can be used to improve the overall accuracy of such methodologies. For this purpose, the use

of scalograms can be recommended. In fact, while spectrograms are suitable for the analysis of stationary signals

providing a uniform resolution, the scalogram is able to localize transients in non-stationary signals.
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