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1. Introduction

Affective computing is a branch of artificial intelligence. It is computing that relates to, arises from, or influences emotions

. Automatic emotion recognition is an area of study that forms part of affective computing. Research in this area is

rapidly evolving thanks to the availability of affordable devices for capturing brain signals, which serve as inputs for

systems that decode the relationship between emotions and electroencephalographic (EEG) variations. These devices

are called EEG-based brain-computer interfaces (BCIs).

Affective states play an essential role in decision-making. Such states can facilitate or hinder problem-solving. Emotion

recognition takes advantage of positive affective states, enhances emotional intelligence, and consequently improves

professional and personal success . Moreover, emotion self-awareness can help people manage their mental health and

optimize their work performance. Automatic systems can increase our understanding of emotions, and therefore promote

effective communication among individuals and human-to-machine information exchanges. Automatic EEG-based

emotion recognition could also help enrich people’s relationships with their environment. Besides, automatic emotion

recognition will play an essential role in artificial intelligence entities designed for human interaction .

2. EEG-Based BCI Systems for Emotion Recognition

Figure 1 presents the structure of an EEG-based BCI system for emotion recognition. 

Figure 1. Components of an EEG-based BCI for emotion recognition.

2.1. Signal Acquisition

Inexpensive wearable EEG helmets and headsets that position noninvasive electrodes along the scalp can efficiently

acquire EEG signals. The clinical definition of EEG is an electrical signal recording of brain activity over time. Thus,

electrodes capture signals, amplify them and send them to a computer (or mobile device) for storage and processing.

Currently, there are various low-cost EEG-based BCI devices available on the market . However, many current models

of EEG-based BCI become incommodious after continued use. Therefore, it is still necessary to improve their usability.
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Alternatively, there are also public databases with EEG data for affective information. Table 1 presents a list of available

datasets related to emotion recognition. Such datasets are convenient for research, and several emotion recognition

studies use them.

Table 1. Publicly available datasets.

Source Dataset
Number of
Channels

Emotion
Elicitation

Number of
Participants

Target Emotions

DEAP
32 EEG

channels
Music videos 32

Valence, arousal,

dominance, liking

eNTERFACE’06
54 EEG

channels

Selected images

from IAPS.
5

Calm, positive,

exciting, negative

exciting

headIT -
Recall past

emotions
31

Positive valence

(joy, happiness) or

of negative valence

(sadness, anger)

SEED 62 channels Film clips 15
Positive, negative,

neutral

SEED-IV 62 channels 72 film clips 15
Happy, sad,

neutral, fear

Mahnob-HCI-tagging 32 channels

Fragments of

movies and

pictures.

30

Valence and

arousal rated with

the self-

assessment

manikin

EEG Alpha Waves

dataset
16 channels

Resting-state eyes

open/closed

experimental

protocol

20 Relaxation

DREAMER 14 channels Film clips 23

Rating 1 to 5 to

valence, arousal,

and dominance
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RCLS 64 channels

Native Chinese

Affective Video

System

 

14
Happy, sad, and

neutral

2.1.2. Emotion Elicitation

The International Affective Picture System (IAPS)  and the International Affective Digitized Sound System (IADS) 

are the most popular resources for emotion elicitation. These datasets provide emotional stimuli in a standardized way.

Hence, it is useful for experimental investigations.

IAPS consists of 1200 images divided into 20 sets of 60 photos. Valence and arousal values are tagged for each

photograph. IADS’ latest version provides 167 digitally recorded natural sounds familiar in daily life, with sounds labeled

for valence, arousal, and dominance. Participants labeled the dataset using the Self-Assessment Manikin system .

IAPS and IADS stimuli are accessible with labeled information, which is convenient for the construction of a ground-truth

for emotion assessment .

Other researchers used movie clips, which have also been shown capable of provoking emotions. In , the authors state

that emotions using visual or auditory stimuli are similar. However, results obtained through affective labeling of

multimedia may not be generalizable to more interactive situations or everyday circumstances. Thus, new studies using

interactive emotional stimuli to ensure the generalizability of results for BCI would be welcomed.

Numerous experiments stimulated emotions in different settings, but they do not use EEG devices. However, they

collected other physiological indicators like heart rate, skin galvanic changes, and respiration rate, among others.

Conceptually, such paradigms could be useful if they are replicated for EEG signal acquisition. Possible experiments

include stress during interviews for the detection of anger, anxiety, rejection, and depression. Exposure to odorants

triggers emotions, such as anger, disgust, fear, happiness, sadness, and surprise. Harassment provokes fear. A threat of

short-circuit or a sudden backward-tilting chair elicits fear. A thread of shock provokes anxiety. Naturally, these EEG-based

BCIs experiments should take into account ethical considerations.

To our knowledge, only a few studies have used more interactive conditions where participants played games or used

flight simulators to induce emotions . Alternatively, some authors have successfully used auto-induced emotions

through memory recall .

2.2. Preprocessing

EEG signals’ preprocessing relates to signal cleaning and enhancement. EEG signals are weak and easily contaminated

with noise from internal and external sources. Thus, these processes are essential to avoid noise contamination that could

affect posterior classification. The body itself may produce electrical impulses through blinking, eye or muscular

movement, or even heartbeats that blend with EEG signals. It should be carefully considered whether these artifacts

should be removed because they may have relevant emotional state information and could improve emotion recognition

algorithms’ performance. If filters are used, it is necessary to use caution to apply them to avoid signal distortions.

The three commonly used filter types in EEG are (1) low-frequency filters, (2) high-frequency filters (commonly known by

electrical engineers as low-pass and high-pass filters), and (3) notch filters. The first two filters are used to filter

frequencies between 1 and 50–60 Hz.

For EEG signal processing, filters, such as Butterworth, Chebyshev, or inverse Chebyshev, are preferred . Each of

them has specific features that need to be analyzed. A Butterworth filter has a flat response in the passband and the

stopband but also has a wide transition zone. The Chebyshev filter has a ripple on the passband, and a steeper transition,

so it is monotonic on the stopband. The inverse Chevishev has a flat response in the passband, is narrow in the transition,

and has a ripple in the stopband. A Butterworth phase zero filter should be used to prevent a phase shift because this filter

goes forward and backward over the signal to avoid this problem.

According to , emotions emerge as the synchronization of various subsystems. Several authors use synchronized

activity indexes in different parts of the brain. The efficiency of these indexes has been demonstrated in , calculating

the correlation dimension of a group of EEG signals. In , other methods were used to calculate the synchronization of
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different areas of the brain. Synchronized indexes are a promising method for emotion recognition that deserves further

research.

2.4. Feature Selection

The feature selection process is vital because it obtains the signal’s properties that best describe the EEG characteristics

to be classified. In BCI systems, the feature vector generally has high dimensionality . Feature selection reduces the

number of input variables for the classifier (not to be confused with dimensionality reduction). While both processes

decrease the data’s attributes, dimensionality reduction combines features to reduce their quantity.

A feature selection method does not change characteristics but excludes some according to specific usefulness criteria.

Feature selection methods aim to achieve the best results by processing the least amount of data. It serves to remove

attributes that do not contribute to the classification because they are irrelevant (or redundant) for simpler classification

models (which are faster and have better performance). Additionally, feature selection methods reduce the overfitting

likelihood in regular datasets, flexible models, or when the dataset has too many features but not enough observations.

2.5. Classification Algorithms

Model frameworks can categorize classification algorithms . The model’s categories may be (1) generative-

discriminative, (2) static-dynamic, (3) stable-unstable, and (4) regularized .

There are two different selection approaches for the classifier that works best under certain conditions in emotion

recognition . The first identifies the best classifier for a given BCI device. The second specifies the best classifier for a

given set of features.

For synchronous BCIs, dynamic classifiers and ensemble combinations have shown better performances than SVMs. For

asynchronous BCIs, the authors in this field have not determined an optimal classifier. However, it seems that dynamic

classifiers perform better than static classifiers   because they handle better the identification of the onset of mental

processes.

From the second approach, discriminative classifiers have been found to perform better than generative classifiers,

principally in the presence of noise or outliers. Dynamic classifiers like SVM generally handle high dimensionality in the

features better. If there is a small training set, simple techniques like LDA classifiers may yield satisfactory results .

2.6. Performance Evaluation

Results must be reported consistently so that different research groups can understand and compare them. Hence,

evaluation procedures need to be chosen and described accurately . The evaluation of the classifier’s execution

involves addressing performance measures, error estimation, and statistical significance testing . Performance

measures and error estimation configure the fulfillment rate of the classifier’s function. The most recommended

performance evaluation measures are shown in Table 2. They are confusion matrix, accuracy, error rating, and other

measures obtained from the confusion matrix, such as the recall, specificity, precision, Area Under the Curve (AUC), and

F-measure. Other performance evaluation coefficients are Cohen’s kappa (k) , information transfer rate (ITR) , and

written symbol rate (WSR) .

Table 2. Conventional performance evaluation methods for BCI.

Performance
Evaluation Main characteristics Advantages Limitations

Confusion
matrix

The confusion matrix presents the
number of correct and erroneous
classifications specifying the
erroneously categorized class.

The confusion matrix
gives insights into the
classifier’s error types
(correct and incorrect
predictions for each
class).
It is a good option for
reporting results in M-
class classification.

Results are difficult to compare and
discuss. Instead, some authors use
some parameters extracted from the
confusion matrix.
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Performance
Evaluation Main characteristics Advantages Limitations

Accuracy
and error rate

The accuracy p is the probability of
correct classification in a certain
number of repeated measures.
The error rate is e = 1 − p and
corresponds to the probability that an
incorrect classification has been
made.

It works well if the
classes are balanced,
i.e., there are an equal
number of samples
belonging to each class.

Accuracy and error rate do not take
into account whether the dataset is
balanced or not. If one class occurs
more than another, the evaluation may
appear with a high value for accuracy
even though the classification is not
performing well.
These parameters depend on the
number of classes and the number of
cases. In a 2-class problem the chance
level is 50%, but with a confidence
level depending on the number of
cases.

Cohen’s
kappa (k)

k is agreement evaluation between
nominal scales. This index measures
the agreement between a true class
compared to a classifier output. 1 is a
perfect agreement, and 0 is pure
chance agreement.

Cohen’s kappa returns
the theoretical chance
level of a classifier.
This index evaluates the
classifier realistically. If k
has a low value, the
confusion matrix would
not have a meaningful
classification even with
high accuracy values.
This coefficient presents
more information than
simple percentages
because it uses the
entire confusion matrix.

This coefficient has to be interpreted
appropriately. It is necessary to report
the bias and prevalence of the k value
and test the significance for a minimum
acceptable level of agreement.

Sensitivity or
Recall

Sensitivity, also called Recall,
identifies the true positive rate for
describing the accuracy of
classification results. It evaluates the
proportion of correctly identified true
positives related to the sum of true
positives plus false negatives.

Sensitivity measures
how often a classifier
correctly categorizes a
positive result.

The Recall should not be used when
the positive class is larger (imbalanced
dataset), and correct detection of
positives samples is less critical to the
problem.

Specificity

Specificity is the ability to identify a
true negative rate. It measures the
proportion of correctly identified true
negatives over the sum of the true
negatives plus false positives.
The False Positive Rate (FPR) is then
equal to 1 – Specificity.

Specificity measures
how often a classifier
correctly categorizes a
negative result.

Specificity focuses on one class only,
and the majority class biases it.

Precision

Precision also referred to as Positive
Predicted Value, is calculated as 1 –
False Detection Rate (F).
False detection rate is the ratio
between false positives over the sum
of true positives plus false positives.

Precision measures the
fraction of correct
classifications.

Precision should not be used when the
positive class is larger (imbalanced
dataset), and correct detection of
positives samples is less critical to the
problem.

ROC

The ROC curve is a Sensitivity plot as
a function of the False Positive Rate.
The area under the ROC curve is a
measure of how well a parameter can
distinguish between a true positive
and a true negative.

ROC curve provides a
measure of the classifier
performance across
different significance
levels.

ROC is not recommended when the
negative class is smaller but more
important. The Precision and Recall
will mostly reflect the ability to predict
the positive class if it is larger in an
imbalanced dataset.

F-Measure

F-Measure is the harmonic mean of
Precision and Recall. It is useful
because as the Precision increases,
Recall decreases, and vice versa.

F-measure can handle
imbalanced data. F-
measure (like ROC and
kappa) provides a
measure of the classifier
performance across
different significance
levels.

F-measure does not generally take into
account true negatives.
True negatives can change without
affecting the F-measure.

Pearson
correlation
coefficient

Pearson’s correlation coefficient (r),
quantifies the degree of a ratio
between the true and predicted values
by a value ranking from −1 to +1.

Pearson’s correlation is a
valid way to measure the
performance of a
regression algorithm.

Pearson’s correlation ignores any bias
which might exist between the true and
the predicted values.



Performance
Evaluation Main characteristics Advantages Limitations

Information
transfer rate

(ITR)

As BCI is a channel from the brain to
a device, it is possible to estimate the
bits transmitted from the brain. ITR is
a standard metric for measuring the
information sent within a given time in
bits per second.

ITR is a metric that
contributes to criteria to
evaluate a BCI System.

ITR is often misreported due to
inadequate understanding of many
considerations as delays are necessary
to process data, to present feedback,
and clear the screen.
TR is best suited for synchronous BCIs
over user-paced BCI.

Performance evaluation and error estimation may need to be complemented with a significance evaluation. This is

because high accuracies can be of little impact if the sample size is too small, or classes are imbalanced (labeled EEG

signals typically are). Therefore, significance classification is essential. There are general approaches that can handle

arbitrary class distributions to verify accuracy values that lie significantly above certain levels. Used methods are the

theoretical level of random classification and adjusted Wald confidence interval for classification accuracy.

The theoretical level of random classification test classification results for randomness is the sum of the products between

the experimental results’ classification probability and the probability calculated if all the categorization randomly occurs

(p  = classification accuracy of a random classifier). This approach can only be used after the classification has been

performed .

Adjusted Wald confidence interval gives the lower and upper confidence limits for the probability of the correct

classification, which specifies the intervals for the classifier performance evaluation index .

3. Conclusions

EEG signals are reliable information that cannot be simulated or faked. To decode EEG and relate these signals to

specific emotion is a complex problem. Affective states do not have a simple mapping with specific brain structures

because different emotions activate the same brain locations, or conversely, a single emotion can activate several

structures.

In recent years, EEG-based BCI emotion recognition has been a field affecting computing that has generated much

interest. Significant advances in the development of low-cost BCI devices with increasingly better usability have

encouraged numerous research studies.
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