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Within three decades of fundamental findings in research on metal—-organic frameworks (MOFs), a new family of
hybrid materials known as gallate-based MOFs, consisting of metal salt and gallic acid, have been of great interest.
Due to the fact that gallic acid is acknowledged to display a range of bioactivities, gallate-based MOFs have been
initially expended in biomedical applications. Recently, gallate-based MOFs have been gradually acting as new
alternative materials in chemical industrial applications, in which they were first reported for the adsorptive
separation of light hydrocarbons. These porous materials have a bright future and can be kept in development for

variety of applications in order to be applied in real industrial practices.

metal—organic frameworks gallate-based MOFs gallic acid CO2

| 1. Introduction

A metal-organic framework (MOF) is a porous hybrid organic-inorganic material that has a strong coordination
bond between a node (metal) and organic linker. MOFs are comprised of metal-containing nodes that bond to
organic linkers which results in well-defined crystalline structures . MOFs can be practically designed and
synthesized according to the building blocks that join together to build a framework 2. Through the selection of
suitable building blocks during synthesis, these porous materials with different shapes and functionalities can be
designed for various applications . The three-dimensionally ordered framework structures can make MOFs
sufficiently robust to permit the removal of the adsorbed guest species, giving rise to permanent porosity [l The
first MOFs with permanent porosity were introduced in 1995 by Yaghi and Li Bl. The great interest in designing
novel MOFs is gradually growing, due to their exclusive structural and functional properties. Among the previously
studied MOFs are MOF-74 (8, MOF-177 [, MOF-5 &, zIF-g &, HKUST-1 19 MIL-101 1) IRMOF-1 2, UiO-66
(231 Nu-100014, MFU-4 158 NOTT-300 18 and so on. In addition, MOFs are widely synthesized using the

solvothermal method, with extensive washing process in order to maximize the effective pore activation 2,

As a rising class of porous material, MOFs have gained worldwide attention, owing to their unique properties such
as high surface area and pore volume, well-ordered porous structure, multiple reaction sites, easily tailored
structures, and diverse means available for functionalization 18122 MOFs can also contribute to several significant
roles as selective adsorbents. This is due to the fact that MOFs have large pore sizes which enable rapid diffusion
kinetics, tunable binding strengths that can affect adsorption selectivity, and, also, high surface areas that can bring
large working capacity 2. Therefore, MOFs are promising agents for adsorption/separation (21, energy storage

(221 drug delivery (23, catalysis 24, magnetism (23, luminescence 28, sensors [2Z, and other useful applications 28],
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Despite all the given advantages of MOFs, the major drawback for commercialization and industrial applications is
the cost of MOFs, which will affect the scale-up production of MOFs on a long-term basis 22, The choice of raw
materials notably impacts large-scale production, because the price per kg of the final MOF products must meet
the lowest possible price in order to be economically viable B2, Linker is one of the most expensive materials in the
production of MOFs, since it can reach up to 40% of the total production costs B2, Gallic acid is known to have
advantages over expensive organic linker due to low cost, low toxicity, easy availability, and natural abundance 2.
The previous study has already proven that gallic acid can act as a successful alternative organic linker in a new
family of hybrid framework materials known as gallate-based MOFs or M-gallate (23, This gallic acid is gained from
the industrial-scale production of biomass and cost around USD 10/kg 24, In addition, the entire synthetic process
is environmentally friendly without the consumption of organic solvents B3, Nonetheless, very few studies have
been conducted on the applications of gallate-based MOFs in industry, as they have just started to gain
recognition. At first, gallate-based MOFs were widely used in biomedical applications. A couple of years back,
gallate-based MOFs gradually gained attention in small scopes of chemical applications, such as light hydrocarbon
separations, due to their outstanding performance. Thus, gallic acid has the potential to be an excellent organic

linker for gallate-based MOFs due to its environmentally and economically friendly nature.

| 2. Gallic Acid

Gallic acid is classified as a phenolic compound, chemically named as 3,4,5-trihydroxybenzoic acid 837, The
molecular dimension of gallic acid is a planar molecule, comprising of an aromatic ring surrounded by three
hydroxyl groups and a carboxyl group 839 This compound is a potential organic linker in forming organic
frameworks, due to the availability of five oxygen atoms located at the opposite side of the molecule, in which there
are slightly large gaps between the phenolic oxygens that are capable of chelating metal ions 9. The other name

of gallic acid is gallate, and its chemical structure (C;HgOs) is shown in Figure 1.

OH

HO OH

HO O

Figure 1. Structure of gallic acid.
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Polyphenols are known as secondary compounds and commonly found in the plant kingdom classified into four
classes such as phenolic acids, flavonoids, stilbenes and lignans 1. Phenolic compounds are essential for the
main organoleptic characteristics of plant-derived foods and beverages, specifically for color and taste properties
(421 phenolic acids are a diverse group reported from plants that consist of ferulic acid, synergic acid, ellagic acid,
caffeic acid and so on 3¢, One of the phenolic acids is gallic acid, which is available in various fruits, vegetables,
wine, coffee and tea [28. Gallic acid that can be found in plants is in the form of esters, free acids, hydrolysable

tannins and catechin derivatives 381,

Gallic acid is a slightly colorless/yellow crystalline solid with melting point of 210 °C, and decomposition within the
temperature range 235-240 °C 431, |t is soluble in water, ether, alcohol and glycerol, but insoluble in chloroform,
benzene and ether petroleum ¥l In addition, this organic linker can form stable complexes with transition metal
ions such as Fe(lll), Co(ll), Mn(ll), Ni(ll), Zn(ll), Cu(l1), and Cd(I1) 281,

Gallic acid and its derivatives are considered to be natural products of the hydrolysis of tannins that are commonly
found in plants such as green and black teas, oak, pomegranate husk and grape 4. For practical applications,
gallic acid is prepared through the breakdown of tannic acid by an enzyme known as tannase, a glycoprotein
esterase 43, The huge interest in this compound is due to its various biological effects, including anti-allergic 42,
anti-inflammatory 481 antiviral 2, antifungal 48, antimicrobial B4, antimutagenic 49, cardioprotective B9,

neuroprotective B, and anticarcinogenic activities 521,

| 3. Gallate-Based MOFs

Gallate-based MOFs, designated as M-gallate, have gained researchers’ attention due to the easily accessible
nature of gallic acid and their uncomplicated preparation B3, These frameworks, that are prepared from the
reaction of metal salts and gallic acid, will give chemical formulas of M(C;05H,)-2H,0 for divalent cations, and
M(C,0sH3)-2H,0 for trivalent cations 3. One of the significant characteristics of the gallate-based MOFs is that
they can contain both divalent and trivalent cations by maintaining the charge balance 9. Gallate-based MOFs,
such as Fe(C;H30s)-2H,0 and M(C;H,05)-2H,0, (M = Mn?*, Co?*, Ni?*), are intriguing in this aspect, since they
are inorganically bonded chains and also have the possibility to exhibit mixed valency through a process named
cation doping 23l In addition, gallate-based MOFs have been proven to have high stability against water and
oxygen, as well as recyclability, since they can be applied under repetitive adsorption—desorption cycles which are

important for real-world applications 541,

Gallate-based MOFs have been known since antiquity, in which iron gallate has been used as an ink and a dye
due to its strong absorption in the visible region 9. This pioneering application of gallate-based MOFs was
introduced in historical iron gall ink (iron gallate) as a writing material. This kind of ink was used to record various
necessary documents and drawings in human history, such as hand-written works 2. Despite its historical
interest, the chemical structure and composition have been subjects of concern. Hence, the study of its crystal
structure performed in 1991 disclosed that it was a 1-D hybrid metal oxide, consisting of infinite chains of trans-

corner-sharing FeOg octahedra 281, The historical colorant of iron gall ink resulted from a reaction of aqueous Fe(ll)
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and gallic acid, resulting in an iron-gallate complex study B4, Apart from that, the other early application of these
solids can be found in the utilization of the lanthanide gallate-based compounds, which were used as the
substrates for the thin film growth of superconductors 8. Thus, the study regarding gallate-based MOFs has been
progressed steadily throughout the years to illustrate their synthesis, crystal structures, magnetic properties, and
thermal behavior 29,
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