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Biotechnological tools include several methods used for plants to develop tolerance to abiotic stress. The genetic

transformation of tomato relies highly on the tissue culture technique. Advances in the field of plant genetic

transformation have enabled the identification of genes that are responsible for tolerance to different environmental

stresses. Various biotechnological tools can be used to alter the tomato genes so that this species can more

rapidly or better adapt to abiotic stress. Further advancement in understanding the genomics of wild relatives of

tomatoes and other Solanaceae has facilitated their exploitation in various breeding programs aiming to introgress

genes responsible for abiotic stress resistance in cultivars.

Solanum lycopersicum  biotechnology  drought  salinity

1. Genetic Transformation Methods in Tomato

Multiple transformation techniques have been utilized to deliver foreign DNA sequences into an ample range of

plant species . The combination of recombinant DNA technologies, genetic transformation, and plant tissue

culture are at the core of the production of transgenic plants in a variety of crops . In

tomato, the first genetic transformation protocol was developed in the 1980s , and still today, Agrobacterium-

mediated techniques are widely employed for many tomato cultivars . Transformation mediated by the

Agrobacterium is a complex process. Briefly, the efficiency of gene delivery into tomato plants depends on various

factors, such as the pre-culture of the explants, culture media, culture density, virulence and strain of

Agrobacterium, phytohormones, type of explants, vectors, size of DNA insert, and genotype of the recipient plant

. Table 1 presents a short selection of research efforts devoted to improving the process of tomato genetic

transformation. Genetic transformation can also be obtained using A. rizogenes . However, some detrimental

phenotypes can be observed in tomato plants, such as shortened internodes, reduced seed setting, and wrinkled

leaves. A. rizogenes–mediated transformation can be utilized for the in vitro production of compounds in tomato

with biopharmaceutical properties. Besides indirect genetic transformations, direct methods like particle

bombardment have also been reported for tomato . This method was optimized by altering factors such as the

quality and quantity of DNA, concentration of osmoticum in the tissue culture media, firing separation, and period of

particle bombardment to which tomato explants are exposed .

Table 1. Investigations focused on improving the efficiency of tomato genetic transformation.
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Footnote. NA: not available.

Besides the addition of a new DNA sequence or (untargeted) mutation of the tomato genome, recent advances in

recombinant DNA technology and reverse genetic approaches, such as antisense technology, RNA interference

(RNAi), and genome editing by CRISPR-CAS9, have revolutionized functional genomics in plants. These

approaches have been utilized in tomato cultivars to delay their ripening during abiotic stress, such as extreme

temperature, by silencing the gene vis 1 .

Overall, the genetic transformation of tomato is a mature and well-established technique that is employed by

numerous laboratories around the world. Although improvements in regeneration and transformation efficiency are

always welcome, the production of genetically modified tomatoes should not be considered a limiting factor for

S. lycopersicum
Cultivar

Transformation
Method Type of Explant Transformation

Frequency (TF) References

Micro-Tom Indirect
Embryonic part of the

seedling
11%

NA Indirect Fruits 54 to 68.0%

Micro-Tom Indirect
Cotyledons

(embryonic part)
5.1%

Hezuo 908 Indirect
Hypocotyls and
embryonic part

40%

Roma and Rio Grande Indirect
Hypocotyls and leaf

disks
24% and 8%,
respectively

Momotaro, UC-97, and
Edkawi

Indirect Hypocotyls 54 to 67%

Castle Rock Direct
Hypocotyls and part of

cotyledons
26.5%

Cambell-28 Indirect Cotyledons 21.5%

Pusa Ruby, Sioux, and
Arka Vikas

Indirect Cotyledons
41.4%, 22%, and 41%,

respectively

Hezuo 908 Indirect
Embryonic part and

Hypocotyl
40%

Shalimar Indirect Shoot and Leaf NA

MicroTom Indirect Leaf 19.1%

NA Indirect Hypocotyls 33 to 59%

Pusa Ruby and DT-93 Indirect Cotyledons higher than 37%

Summer Indirect
Hypocotyls and

cotyledons
7%
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biotechnological approaches since efficient and repeatable transformation and regeneration protocols are widely

available.

2. Transformation Approaches Using rDNA Technologies
(Genetic Engineering)

Climate change is predicted to increase the occurrence of abiotic stress, further hampering the ability of plants to

yield . Traditional plant breeding has limitations for creating a substantial level of tolerance against abiotic stress

because it is time-consuming and often requires a complex breeding scheme to insert multiple sources of variability

from wild relatives to a cultivated variety. Recombinant DNA (rDNA) technology–based tools have been traditionally

considered alternatives to change the genetic constitution of plants. Different rDNA technologies have been

employed to modify the tomato genome so that it can adapt to abiotic stress. These modifications include the

exploitation of regulatory genes highly expressed during stress and coding for enzymes whose biochemical or

enzymatic activity is useful to counteract abiotic stress . 

2.1. Mannitol

Mannitol is an important polyol (sugar alcohol) produced from fructose metabolism and serves as a scavenger of

free radicals and osmoregulation. The enzyme involved in fructose metabolism to obtain mannitol is mannitol-1-

phosphate dehydrogenase, and the corresponding gene encoding this enzyme is mt1D . In tomato, the

constitutive expression of a bacterial mt1D gene driven by the CaMV 35S promoter provides improved tolerance

against chilling, drought, and saline stress .

2.2. Glycine Betaine

It is an organic compound derived from the amino acid glycine, whose accumulation in plants may occur following

abiotic stress. In plants, this compound is considered an organic osmolyte, ensuring, for instance, the regulation

and preservation of the thylakoid membrane and, thus, sustaining the photosynthetic efficiency under stress .

Various studies have used biotechnological tools, such as the overexpressing of this compound, to facilitate an

increased response of plants to abiotic stress tolerance. For example, the expression of the bacterial choline

oxidase A (coda) in tomato targeted to the chloroplasts with a transit peptide resulted in an accumulation of glycine

betaine in a relatively low (0.09 to 0.30 µmol·g  FW) but significant (up to 86% in chloroplasts compared to

unstressed control plants) amount, sufficient to enhance tolerance to chilling at various phenological stages, as

indicated by an increased yield in stress conditions of the transgenic plants .

2.3. Glutathione

Glutathione, an important antioxidant performing multiple functions in plants, is synthesized from amino acids (i.e.,

L-glutamate, cysteine, and glycine). The whole process requires two ATP molecules and is catalyzed by two

glutamate enzymes—cysteine ligase (GCL) and glutathione synthetase (GSS). This tripeptide provides protection
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at cellular and tissue levels in response to various reactive oxygen species (ROS), such as peroxides, superoxides,

and hydroxyl radicals . Glutathione has an important role during induced stress. The constitutive expression in

tomato of a Se-independent glutathione peroxidase (GPx5) from Mus musculus resulted in an increased tolerance

to mechanical stress . Similarly, the concurrent constitutive expression of two glyoxalase (GlyI and GlyII) from

Brassica juncea in tomato showed a reduced growth depression and membrane damage (as indicated by the level

of lipid peroxidation and hydrogen peroxide production in leaves) following long-term exposure (3 months) to

salinity (up to 800 mM NaCl) .

2.4. Osmotin

Osmotin is a 26 kDa protein, a member of the PR-5 family, which also includes zeamatin and thaumatin. It

accumulates in plants as a defense mechanism against abiotic stress because of its prominent role in

osmoregulation . It has been reported that tomatoes constitutively expressing an osmotin gene from Nicotiana

tabacum have higher levels of proline, increased chlorophyll contents, and higher water contents (under stress).

These features were considered crucial in helping tomato withstand salt stress (150 mM NaCl for 10 days) . The

osmotin from N. tabacum was also used to increase pathogen resistance in transgenic barley, while it did not have

a significant impact on insect-borne virus infections (by aphids and leafhoppers) 

2.5. Polyamines

Polyamine (PA) is a term used to indicate the wide class of organic molecules having multiple (more than two)

amino acid groups. In plants, naturally occurring, low molecular–weight polyamines are associated with

embryogenesis, organogenesis, anthesis, fruit development, ripening, and leaf senescence, but there is also

evidence of their role in stress response . The most common and abundant PAs in plants are putrescine (a

diamine) and its derivatives spermidine and spermine . Tomato transformed to constitutively express the

arginine decarboxylase gene from Poncirus trifoliata (PtADC), indirectly involved in the biosynthesis of putrescine,

showed increased levels of free PAs and improved tolerance to leaf dehydration and drought stress . Tomato

genetically transformed to constitutively overexpress the tomato SlSAMS  gene accumulated PAs and hydrogen

peroxide and had an improved alkali stress tolerance. This gene is a member of the S-adenosylmethionine

synthetase (SAMS) family, and it is stress-inducible. These genes catalyze the formation of SAM, which is also a

precursor to PAs .

2.6. Trehalose

Trehalose is a highly soluble disaccharide made of glucose subunits, and it is present in a wide range of

organisms, including prokaryotes, algae, mosses, fungi, protozoa, and mammals. Trehalose appears to be able to

play a special function as a stress metabolite protecting the integrity of the cell against environmental stress and

nutrient limitations . Traditionally, trehalose has been of little importance for angisoperms, where another non-

reducing saccharide, sucrose, has a predominant role in carbon storage and transport. Nonetheless, the discovery

of gene families encoding trehalose phosphate synthases (TPSs) and trehalose phosphatases, along with their

subsequent functional characterization, indicated that trehalose acts mainly as an osmoprotectant and as a signal
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molecule involved in stress response. Recombinant DNA technologies have made it possible to modify genes

governing trehalose metabolism in tomato. For example, the constitutive expression of Saccaromyces cerevisiae

ScTPS1 improved tolerance against drought or salt. Nonetheless, transgenic plants had phenotypic abnormalities

and alterations in carbohydrate biosynthesis .

2.7. Biosynthesis of Ethylene

Ethylene is a well-known plant hormone whose commercial derivatives are also used to induce post-harvest

tomato ripening. Because of its applied importance, there are several studies on genetically modified tomato

cultivars with altered ethylene pathways in relation to fruit maturation. Ethylene production is typically increased in

stressful environmental conditions. Several works have demonstrated that one of the positive effects of plant

growth–promoting rhizobacteria (PGPR) is lowering the ethylene level under stress by cleaving and deaminating

aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, by ACC-deaminases . Tomato cultivars

expressing a bacterial ACC deaminase under constitutive and inducible promoters were more tolerant to flooding

.

2.8. Aquaporins

Aquaporins (AQPs) are trans-membrane proteins that allow the movement of water and small solutes between and

within cells. Numerous studies have reported the potential roles of aquaporins in relation to abiotic stress in plants,

water use efficiency (WUE), and solute transport in plants . In tomato, over forty members of the AQP gene

family have been linked to abiotic stress and plant development, mainly because of their expression pattern .

The overexpression of genes regulating the formation and functioning of aquaporins, such as SlTIP;2, in tomato

increased the tolerance to abiotic stress. Interestingly, transgenic plants were more productive and had higher

biomass than untransformed controls in normal and drought conditions . An AQP from apple (MdPIP1;3) was

also used to increase fruit growth rate and size mainly thanks to bigger cells, also increasing tolerance to drought

stress . Similarly, the overexpression of SlPIP2;1 conferred to tomato’s higher hydraulic conductivity and

tolerance against drought stress .

2.9. Heat Shock Proteins

A set of relatively conserved, ubiquitous proteins, referred to as heat shock proteins, are synthesized by virtually all

organisms, including plants, in response to various environmental stresses. These proteins often serve as

intracellular chaperones and, for the establishment of protein-protein interaction, are involved in protein folding,

assembly, translocation, degradation, and transport . Different genes encoding HSPs (e.g., HsfA1, HsfA2,

HsfB1, LeHSP 17.6) have been identified and delivered to tomato to facilitate the production of HSPs, with the

common aim of helping plants better adapt to stress . Moreover, the overexpression in tomato of LeHSP21.5

diminished tunicamycin-induced ER stress . Tunicamycin is an antibiotic that inhibits protein N-glycosylation,

hence, inducing misfolded glycoproteins, and it is experimentally used to induce the unfolded protein response in

living organisms. Furthermore, other plant chaperonins have been employed to increase the stress resistance in

tomato . For example, the overexpression of the tomato SlDnaJ20 relieved ROS accumulation by ensuring high
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levels of SOD and APX activities and was associated with higher fresh weights of six-week-old plants under heat

stress .

2.10. Antioxidants

Many antioxidants have been reported in plants that act as buffers to regulate the redox potential of cells. Among

antioxidant enzymes, the most exploited in plant biotechnology are probably glutaredoxins, catalases, ascorbate

peroxidases (APX), and superoxide dismutases (SOD). Just to give a few examples of applications, a catalase

gene (katE) from E. coli, introduced in the chloroplast genome of tomato under the RBCS promoter, increased

catalase activity and better protected plants from oxidative stress induced by high light intensity, drought, or low

temperature, compared to the untransformed control . An ascorbate peroxidase from tomato (LetAPX) was

expressed in Arabidopsis and conferred resistance to cold (4 °C for up to 24 h) . Genetically modified tomato

cultivars expressing the A. thaliana Fe-SOD gene promoted the increased performance and stability of the

photosynthetic apparatus under UV stress .

2.11. Ion Transport Proteins

Cation and anion transporters comprise a large class of transmembrane proteins vital for any organism, serving the

purpose of moving ions and other small molecules within and between cells. These proteins are fundamental for

ion homeostasis and are involved in salt stress resistance because they participate in sodium and chloride uptake,

translocation, and cellular compartmentalization . Numerous investigations have reported that genes like HAL1

and HAL5, encoding ion transport proteins in S. cerevisiae, when delivered to tomato using recombinant DNA

technology, increased the tolerance of toward salinity . Similarly, the A. thaliana AtNHX1 gene inserted in the

tomato genome resulted in improved salinity tolerance . In both cases, a positive effect was associated with an

improved K/Na ratio under saline conditions. The importance of K homeostasis in the tolerance to NaCl stress was

also demonstrated by overexpressing the endosomal LeNHX2 ion transporter .
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