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Semi-supervised learning (SSL) methods have made significant advancements by combining consistency-

regularization and pseudo-labeling in a joint learning paradigm. The core concept of these methods is to identify

consistency targets (pseudo-labels) by selecting predicted distributions with high confidence from weakly

augmented unlabeled samples. 

semi-supervised  pseudo-label  prototype consistency

1. Introduction

In the past few decades, machine leaning has demonstrated remarkable success across various visual tasks 

. This success can be attributed to advancements in learning algorithms and the availability of extensive

labeled datasets. However, in real-world scenarios, the construction of large labeled datasets can be costly and

often impractical. Therefore, finding ways to effectively learn from a limited number of labeled data points has

become a major concern. This is where semi-supervised learning (SSL)  comes into play. SSL is an

important branch of the machine learning theory and its algorithms, which has emerged as a promising solution to

address this challenge by leveraging the abundance of unlabeled data. It has proven to be a remarkable

achievement in the field.

The goal of SSL is to enhance the generalization performance by leveraging the potential of unlabeled data. One

widely accepted assumption, known as the Low-density Separation Assumption , posits that the decision

boundary should typically reside in low-density regions in order to improve generalization. Building upon this

assumption, two prominent paradigms have emerged: pseudo-labeling  and consistency regularization .

These approaches have gained significant popularity in the field as effective methods for leveraging unlabeled data

in the pursuit of a better generalization performance. Consistency-regularization based methods have become

widely adopted methods in SSL. These methods aim to maintain the stability of network outputs when presented

with noisy inputs . However, one limitation of consistency-regularization based methods is their heavy

reliance on extensive data augmentations, which may restrict their effectiveness in certain domains such as videos

and medical images. On the other hand, pseudo-labeling based methods are alternative approaches that have

gained popularity in SSL. These methods select unlabeled samples with high confidence as training targets

(pseudo-labels) . One notable advantage of pseudo-labeling based methods is their simplicity, as they do not

require multiple data augmentations and can be easily applied to various domains.
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In recent trends, a combination of pseudo-labeling and consistency regularization has shown promising results 

. The underlying idea of these methods is to train a classifier using labeled samples and use the predicted

distribution as pseudo-labels for unlabeled samples. These pseudo-labels are typically generated by weakly

augmented views , or by averaging predictions from multiple strongly augmented views . The objective is

then constructed by applying the cross-entropy loss between the pseudo-labels and the predictions obtained from

different strongly augmented views. It is worth noting that the pseudo-labels are often sharpened or processed

using argmax, and each instance is assigned to a specific category to further refine the learning process.

2. Consistency Regularization

Consistency regularization is a commonly used technique in machine learning to improve the generalization ability

and stability of models. Specifically, it often employs input perturbation techniques . For example, in image

classification, it is common to elastically deform or add noise to an input image, which can dramatically change the

pixel content of an image without altering its label. In other words, it can artificially expand the size of a training set

by generating a near-infinite stream of new, modified data. Up to now, many methods based on the pseudo-label

have been proposed. For instance, in , it increases the variability of the data by incorporating stochastic

transformations and perturbations in deep semi-supervised learning. Simultaneously, it minimizes the discrepancy

between the predictions of unlabeled samples and their true labels. Temporal Ensembling  meets the

consistency requirements by minimizing the mean square difference between the predicted probability distributions

of the two data-augmented views. Mean Teacher  further extends this concept by replacing the aggregated

predictions with the output of an exponential moving average (EMA) model. In VAT , consistency regularization

is implemented through the introduction of virtual adversarial loss. It perturbs samples in the input space with a

small noise and maximizes the adversarial loss, forcing the model to generate consistent predictions for these

perturbed samples. To encapsulate, in semi-supervised learning, a classifier should output the same class

distribution for an unlabeled example, whether it was augmented or not. For unlabeled points x, in the simplest

case, it is achieved by adding a regularization term to the loss function as follows:

Note that Augment(x) is a stochastic transformation, so the two terms in Equation (1) are not identical. VAT 

computes an additive perturbation to apply to the input, which maximally changes the output class distribution.

MixMatch  utilizes a form of consistency regularization through the use of standard data augmentation for images

(random horizontal flips and crops). FixMatch  distinguishes between two degrees of data augmentation (weak

and strong): weak augmentation uses standard data augmentation, and strong augmentation may include greater

random clipping, rotation, scaling, affine transformation, etc.

3. Pseudo-Labeling

Pseudo-labels are artificial labels generated by the model itself; they aid the model in learning more robust and

generalized representations. However, one should be cautious when using pseudo-labels, as prediction results
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may include errors or uncertainty, potentially introducing noise. Among pseudo-labeling-based approaches, such

as , they conduct entropy minimization implicitly by constructing hard (one-hot) labels from high-confidence

predictions on unlabeled samples. TSSDL  introduces confidence scores which are determined based on the

density of a local neighborhood surrounding each unlabeled sample to measure the reliability of pseudo-labels. In

, it involves training a teacher model on labeled data to generate pseudo-labels for unlabeled data. Then, a

noisy student model is trained using the unlabeled data with pseudo-labels. R2-D2  attempts to update the

pseudo-labels through an optimization framework. It generates pseudo-labels by the decipher model during the

repetitive prediction process on unlabeled data. In summation, appropriate measures can ensure the reliability of

the pseudo-labeled data. It encourages us to focus on the sample with a high confidence (low entropy) that is away

from the decision boundaries.

4. The Combination of Consistency Regularization and
Pseudo-Labeling

Some methods  propose to integrate both approaches in a unified framework, which is often called the

holistic approach. As one of the pioneering works, FixMatch  first generates a pseudo-label from the model’s

prediction on the weakly-augmented instance and then encourages the prediction from the strongly-augmented

instance to follow the pseudo-label. Their success inspired many variants that use, e.g., curriculum learning .

FlexMatch  dynamically adjusts the pre-defined threshold in a class-specific manner based on the estimated

learning status of each class, which is determined by the number of confident unlabeled data samples. Dash 

dynamically selects the unlabeled data whose loss value does not exceed a dynamic threshold at each

optimization step to train learning models. These methods show high accuracy, comparable to supervised learning

in a fully-labeled setting.
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