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Chromosome instability (CIN) is an increased rate where chromosome acquire alterations due to errors in cell division.

CIN creates genetic and cytogenetic diversity and is a common feature in hematological malignancies such as acute

myeloid leukemia (AML). Low to moderate levels of CIN seems to be well tolerated and can promote cancer proliferation,

genetic diversity, and tumor evolution. However, high levels of CIN seems to be lethal, where enhancing CIN could

improve AML treatment. However, little is known about CIN in AML.
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1. Introduction

Since Boveri’s theory that chromosome abnormalities promote cancer, studies have attempted to elucidate the

mechanisms behind the origins of chromosomal aberrations . Chromosomal instability (CIN) is the increasing rate in

which cells acquire new chromosomal alterations. Depending on the type of abnormalities, it can be classified into

numerical CIN (nCIN), characterized by chromosome gains and losses, and structural CIN (sCIN) represented by

chromosome translocations . Importantly, CIN is one of the cancer hallmarks . CIN can promote selective advantage

to cancer cells by increasing the probability of novel chromosomal abnormalities, which can change the expression profile

of the genes regulating cell division and differentiation, resulting in high proliferation rates . Recent studies have

shown a deep relationship of CIN with the origin, progression, and relapse in many cancers .

CIN not only occurs as a tumor-promotor mechanism but also as a tumor-suppressor mechanism. This observation

comes from the evidence showing that different levels of CIN lead to distinct outcomes. Moderate or low levels of CIN are

associated with increased rates of genetic cancer-promoting features. On the other hand, extreme levels of CIN could

lead to decreased cell fitness or apoptosis . The levels of CIN and the sites in which it occurs can also indicate different

outcomes . Therefore, CIN features not only could refine risk stratifications but also opens opportunities for new

therapeutic approaches in cancer .

The current models for CIN involve telomere dysfunction, defective spindle assembly, sister chromatid cohesion, DNA

double-strand breaks (DSB) repair, genes involved in the cell cycle, and epigenetic regulators. These CIN mechanisms

and their signatures can be largely found in acute myeloid leukemia (AML), a heterogeneous disease characterized by

abnormal proliferation and accumulation of myeloid precursor cells in the bone marrow . AML can be classified as de

novo AML, secondary AML (s-AML), whose origin is from a prior hematologic disease, and therapy-related AML (t-AML),

which arises as a result of exposure to alkalizing agents, irradiation, and other factors associated to prior therapy .

Regardless of the classification, approximately 55% of AML patients show chromosomal abnormalities . Cytogenetic

abnormalities in AML are an important prognostic factor and are used for risk-stratification and guide treatment definition

. For example, a complex karyotype (CK) is associated with poor prognosis . In older patients (≥60 years), only

10–44% of those with ≥3 cytogenetic abnormalities achieve complete remission (CR) after therapy, and for those with ≥5

chromosome abnormalities, the CR rates are significantly lower (7–26%) . In this review, we will focus on

the mechanisms associated with CIN resulting in cytogenetic abnormalities (Summarized in Figure 1), their prognostic

impact, and the use of CIN as a target among the AML types.
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Figure 1. CIN in AML can lead to many cytogenetic abnormalities, such as (A) trisomies, (B) telomere loss, (C) reciprocal

translocations, (D) unbalanced translocations, (E) monosomies, (F) Dicentric chromosomes, (G) deletions, (H) ring

chromosomes, (I) polyploidy.

2. Mechanisms and Consequences of CIN
2.1. Aneuploidy and CIN in AML, Mechanism and Consequence — An Inter-Relationship

One type of nCIN is aneuploidy, characterized by an abnormal number of chromosomes in the cell, which is a result of

chromosome mis-segregation errors . These errors can occur when the chromosomes fail to attach correctly to the

mitotic spindle . CIN and aneuploidy are not synonymous . Although CIN is defined as the increasing rate in which

cells acquire new chromosomal alterations, aneuploidy is associated to the abnormal number of chromosomes in the

karyotype at a specific point in time . Aneuploidy can also be found after clonal expansion, and this is not implying that

the same cell will acquire new chromosomal alterations in every cell division. That is the case of constitutional trisomies,

such as trisomy 21 or Down’s syndrome, which presents aneuploidy but not CIN . However, patients with trisomy of the

21 have a predisposition to cancer, such as hematologic malignancies . In AML, aneuploidy is present in more than

20% of cases  and is related to poor prognosis .

A key gene to maintain diploid karyotype in normal cells is TP53 . This protein regulates cellular differentiation, cell

cycle arrest, and DNA repair preventing genomic instability . Mutations in TP53 arise before or after the first

aneuploidy event  These mutations are also considered an early leukemogenic event in preleukemic stem cells 

. Alteration in TP53 may result in the continued proliferation of aneuploidy cells or can trigger off apoptosis . TP53
has a role in suppressing nCIN and sCIN by inducing apoptosis in cells that have a long pause in the mitotic checkpoint,

which indicates DNA damage . Mutations in tumor suppressor genes comprise 16% of AML patients, and TP53 is one

of them . The incidence of TP53 mutations in AML varies between 10% and 15% . In general, TP53 mutations

are highly present in AML patients with CK (60%) .

Interesting, the incidence of TP53 mutations in AML is low in comparison with other cancer types. This observation

highlights that additional mechanisms are affecting p53 function for AML patients . Many pathways have been

proposed for non-mutational wtp53 inactivation in AML. Mdm4, a p53 negative regulator, is overexpressed in 10% of

cases in wtp53 AML with CK . Li et al. (2014) described that Mdm4 overexpression was associated with aneuploidy

or polyploidy, showing an important link between Mdm4 overexpression, wtp53 inhibition and CIN in AML .

Additionally, Mdm2 overexpression, another p53 negative regulator, is seen in more than 50% of wtp53 AML patients 

. Together with Mdm2 and Mdm4 overexpression, ARF down-regulation, deregulated post-translational

modifications, and nuclear-cytoplasmic microRNAs were also described as non-mutational wtp53 inactivation in AML .

Cazzola et al. (2019) demonstrated that AML cells TP53-knockout have CIN phenotype and karyotype heterogeneity .

The deletion of 5q, a chromosomal region containing many protein-encoding genes associated with hematopoietic

differentiation, together with TP53 mutations, can promote genome and chromosomal instability to block normal

hematopoietic differentiation and is significantly associated with CK and poor prognostic . In addition, 5q deletion,

which leads to the haploinsufficiency of the genes involved in cell cycle control, as a sole chromosomal abnormality, is
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rare in AML patients. However, together with TP53, this alteration is frequently found in AML patients with CK (60–69%)

. Together, these observations show a strong association between CK and the deletion of checkpoint genes

(TP53 and the ones located at 5q), suggesting an important role of dysfunctional cell cycle checkpoint in AML.

2.2. Chromosome Segregation Errors

2.2.1. Defects in the Spindle Assembly Checkpoint (SAC)

Jin and Burkard (2018) have associated CIN in AML patients with defects in the spindle assembly checkpoint (SAC). SAC

is a mitotic checkpoint mechanism used to prevent transition to anaphase when there is an error on the kinetochore-

microtubules attachments . When SAC is malfunctioning, cells without proper spindle attachments can bypass

anaphase checkpoints and divide . The inactivation of the entire mitotic checkpoint can generate chromosome mis-

segregation leading to CIN or cell death  in various cancers .

Mosaic variegated aneuploidy (MVA) is a rare human chromosomal instability disorder. Patients with MVA present

germline mutations in the mitotic checkpoint components and 25% of the cells show aneuploidy . The most relevant

mutation is in the spindle checkpoint gene BUB1B, where the SAC protein BubR1 is expressed. BubR1 stabilizes the

kinetochore-microtubule and corrects the proper chromosome positioning. It prevents cell division until forming an

appropriate bi-oriented mitotic spindle . In MVA, mutations in BUB1B leads to CIN with consecutive constitutional

mosaicism for chromosomal gains and losses and subsequent predisposition to several types of cancer . In AML,

Schnerch et al. (2012) suggested a role of SAC insufficiency in the pathogenesis and progression of patients with a CK

. Since BUBR1 is an anaphase-promoting complex (APC/C) inhibitor gene, AML cells with defects in this gene usually

allow chromosomal alterations to bypass mitosis .

The most common chromosomal abnormality found in AML is t(8;21)(q22;q22) . Boyapati et al. (2007) demonstrated in

cell lines that the resulting fusion protein t(8;21) from AML impairs the spindle checkpoint and promotes aneuploidy .

Nucleoporin 98 gene (NUP98) is another gene associated with SAC defects in AML. NUP98 regulates the timely

destruction of securin by APC/C . Cells with NUP98 translocation contain aberrant securin (a regulatory protein of the

metaphase-anaphase transition), leading to aneuploidy . Another APC/C protein with decreased expression in AML is

Cdh1, an antagonist regulator of SAC (which activates and mediates securin degradation). Therefore, the high number of

SAC alterations in AML cells can be associated with other dysfunctional chromosome segregation features.

2.2.2. Cohesion Defects

Sister chromatids are kept together until the proper formation of the bipolar spindle. If cohesion between sister chromatids

is lost, chromosomes mis-segregate . Cohesin defects, which is a protein complex mediating sister chromatid

cohesion, are also associated with aneuploidy and CIN . Ley et al. (2013), using whole-exome sequencing,

showed mutations in cohesin complex genes in 13% of de novo AML patients . However, cohesin gene mutations did

not show a prognostic impact in AML. This is probably due to the co-existence of cohesin complex mutations with NPM1
(Nucleophosmin 1) mutations . Interestingly, the co-existence of both mutations is associated with a favorable

prognosis and normal karyotype in AML . NPM1 mutation results in the inactivation of the nuclear factor-κB (NF-κB)

in the cytoplasm . Since activation of NF-κB provides drug resistance to chemotherapy drugs in AML, the association

between cohesion and NPM1 mutations leads to favorable prognostic and chemosensitivity.

2.2.3. Centrosome Dysfunction and Assembly of Multipolar Mitotic Spindles

Another important mechanism related to CIN is centrosome dysfunction . Dysfunctional centrosomes are

characterized by the presence of aberrant centrosomes numbers, imbalances in centrosome-associated proteins

expression, centrosome structural abnormalities, and alterations in the clustering of centrosomal components . Cells

presenting centrosome defects show the formation of multipolar mitotic spindles (cells with multiple centrosomes) .

Neben et al. (2003) have shown an association between abnormal centrosomes and the presence of cytogenetic

alterations in AML. Interestingly, centrosome dysfunction allowed stratification into cytogenetic risk groups, where higher

numbers of centrosome alterations were related to an increased adverse prognosis. The authors also suggested

centrosome aberrations and multipolar mitotic spindles as the cause of numerical chromosome alterations in AML patients

.

The aurora kinases, a family of serine-threonine protein kinases, have a key role in centrosome dynamics, mitotic spindle,

and mitotic centrosomes . Two common types of these proteins are Aurora A and Aurora B. Aurora A is active during

the late S and early G2 phase and ensures a proper spindle assembly and chromosome alignment during mitosis . On

the other hand, Aurora B functions as a protein complex (through the G2 phase) and is in charge of bipolar attachment of

the spindle to the centromeres and correct segregation of the sister chromatids . Aurora kinases A and B are
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overexpressed in AML CD34  blast cells compared to CD34  from normal individuals with no evidence of hematologic

diseases . Lucena-Araujo et al.(2010) reported that high expression of Aurora Kinases A and B was related to

unfavorable cytogenetic abnormalities, represented by CK and high blasts count in AML patients . Yang et al. (2013)

outlined that AML blasts overexpressing Aurora A were chemotherapy resistant. Aurora A negatively regulates p53 and,

due to the role of p53 in the induction of apoptosis, its downregulation allows cells to escape from apoptosis induced by

chemotherapy in AML .

2.3. DNA Double-strand Breaks

DSBs can lead to translocations and DNA deletions . One of the major causes of DSBs is a failure in the

chromosome decatenation (disentanglement of the chromosomes) . In normal cells, the decatenation

checkpoint during the G2 phase delays the entry into mitosis until every chromosome is decatenated by the enzyme

topoisomerase IIα (topo II) . Wray et al. (2009) reported that AML cells that fail to arrest at the mitotic decatenation

checkpoint continue to proliferate due to Metnase activity. Metnase (SETMAR) is a SET-transposase fusion protein that

promotes non-homologous end-joining repair even in the presence of Topo IIα inhibitor . Jacoby et al. (2014) showed

that DSBs response is abnormal in myeloblasts from t-AML patients, and this feature was associated with trisomy 8. The

authors suggested that the association between abnormal DSBs and trisomy 8 in AML is related to MYC overexpression

. MYC is a proto-oncogene located at the long arm of chromosome 8 (8q24). MYC deregulation leads to DNA damage

, the induction of genomic instability and telomere dysfunction . The induction of DNA damage through DSBs

seems to occur through direct MYC-mediated suppression of the NHEJ (Non-homologous end-joining), an important

pathway that repairs DSBs in normal cells .

Trisomy 8 can be found in the blood of normal individuals . Grove & Vassiliou (2014) proposed that it may be one

of the early AML leukemogenesis events . Importantly, the gain of chromosome 8 is one of the most common

chromosomal abnormalities in AML. It represents 30–40% of cases alone or in association with other cytogenetic

abnormalities, and it is known as the most frequent gain of chromosome in AML patients with CK .

2.4. Telomere Dysfunction

Telomeres are TTAGGG repetitive sequences directly associated with capping proteins, shelterin proteins, that protect the

ends of chromosomes . The linear chromosome DNA ends have a 3′ single-stranded overhang, which prevents those

sites from being recognized as DSBs and activate DNA damage response pathways . Telomere overhang length

remains constant in healthy individuals over time ). However, in AML, Yan et al. (2013) reported that patients

with abnormal karyotype presented shorter overhang length than those with normal karyotype . The authors

suggested the overhang length as an important prediction of poor prognosis in AML patients .

Telomeres become shorter at each cell division and, without telomerase, an enzyme that adds TTAGGG repetitive

sequences to elongate the telomeres, cells undergo senescence . The senescence occurs when telomeres become

critically short, a phenomenon known as Hayflick limit, resulting in the cell cycle arrest. Nevertheless, cancer cells can

bypass the telomere crisis through different mechanisms. Reactivation of telomerase is the most common mechanism to

maintain telomere length, followed by the alternative mechanism of telomere lengthening (ALT) . Telomerase

reverse transcriptase (abbreviated as TERT, or hTERT in humans) is a catalytic subunit of the enzyme telomerase, which,

together with the telomerase RNA component (TERC), comprises an important unit of the telomerase complex . A

decrease or loss of telomerase activity by mutations leads to telomere shortening, increasing the risk of CIN and,

consequently, of cancer. The telomerase complex genes are frequently mutated in AML .

Swiggers et al. (2006) demonstrated that critically short telomeres in blasts AML patients lead to nCIN. The authors

reported an increased rate of loss or gain of chromosome parts after telomere shortening . Hartmann et al. (2005) also

supported the relationship between short telomeres and CIN in AML. In both studies, telomere length and hTERT

expression correlated with chromosomal abnormalities in AML patients. They found that telomere length in mononuclear

cells of AML patients was significantly reduced compared to controls (peripheral blood granulocytes from healthy

individuals). In addition, patients with abnormal karyotype presented shorter telomeres than those with normal karyotype.

In contrast, extremely short telomeres (median of -3,7 kb compared to healthy donors) were found in AML patients

showing multiple chromosomal abnormalities. Furthermore, hTERT continued to be associated with an increase in the

karyotype complexity .

Capraro et al. (2012) have also shown that an abnormal karyotype was associated with shorter telomeres and extremely

low telomerase activity in AML . Interestingly, dyskeratosis congenita (DC), a disease characterized by bone marrow

failure, also presents short telomeres and shows a high predisposition to AML (with approximately 200-fold for AML
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compared to the general population) . Therefore, telomere shortening is viewed as an important feature in AML and to

be related to poor prognosis . However, Warny et al. (2019) reported data not corroborating with these

previous studies. Their interesting findings point out that telomere length in the bone marrow mononuclear cells was

similar in size both at the moment of diagnosis and at relapse. They also observed that telomere length increased after

chemotherapy-induced remission, but no prognostic association was found . Warny et al. (2019) correlated telomere

maintenance with telomerase. This is an interesting observation since elevated telomerase activity and hTERT expression

were reported in 87% of AML patients in another study . Swiggers et al. (2006) also observed high telomerase activity,

except that AML patients with short telomeres presented high telomerase activity. In this case, high expression of TRF1, a

protein that is a negative regulator of telomere length, was proposed to explain the co-presence of high telomerase

activity and extremely short telomeres .

Telomeres are also responsible for preventing end-to-end fusions of chromosomes, one of the major mechanisms that can

trigger both nCIN and sCIN . Critically short telomeres and, consequently, telomere aggregates can result in fused

chromosomes with two centromeres (dicentric chromosomes) . During anaphase, the dicentric chromosomes form a

bridge between the bipolar spindles and the centromeres of the sister chromatids pulled in opposite directions causing

their breakage. Importantly, such breaks can occur in different places of the chromosome, not necessarily between fused

chromatids. The contiguous repetition of this process gives rise to the phenomenon known as breakage-fusion-bridge

(BFB) cycles, which is associated with CIN .

Dicentric chromosomes (DC) are one of the major signatures of telomere dysfunction. The incidence of dicentric

chromosomes varies among AML types, but in general is present in 8–15% of all AML cases . DCs are mainly

found in CK (23%), where more than one DC is usually present . DCs play an important role in oncogenesis, as

demonstrated by Gascoigne and Cheeseman (2013). The authors showed that the occurrence of a single dicentric

chromosome could contribute to tumor initiation in AML . Furthermore, Sarova et al. (2016) related the presence of DC

to MDS progression to AML, in which the transformation was characterized by the acquisition of more complex karyotypes

.

2.5. Complex Chromosomal Rearrangements

Complex chromosome rearrangements (CCR) have been extensively reported in AML . Various

mechanisms have been suggested to the occurrence of this phenomenon (e.g., non-homologous end joining (NHEJ),

replication-based mechanisms, BBF cycles, telomere dysfunction) . Some authors have been using the term

chromothripsis for the event where genetic material suffers an enormous clustered chromosomal rearrangement on

specific regions of one or few chromosomes in a single cell cycle . Since chromothripsis is not proven to be the cause

of this phenomenon, here we will describe these abnormalities just as CCRs . Rausch et al. (2012) showed that in

their cohort of AML TP53 mutated patients, ∼47% of cases presented CCRs. The occurrence of CCRs was associated

with a poor prognosis . Rücker et al. (2018) reported CCRs in 35% of AML patients with CK. In 85% of cases with

CCRs presented mutated TP53 . Once more, this data highlights the role of dysfunctional TP53 on CIN in AML.

Hence, Fontana et al. (2018) have found an incidence of 6.6% CCRs in a large cohort of AML patients (N=395). It was

also reported that AML cells with CCRs also presented signatures of CIN, such as TP53 alteration, a higher mean of copy

number alteration (CNA), CK, 5q deletion, alterations in DNA repair, and cell cycle. They also observed that AML cells with

CCRs had marker chromosomes with the MYC gene . Furthermore, Gao et al. (2020) reported that in AML-MRC with

CCRs, this phenomenon was associated with a lower number of white blood cells and platelets and a higher degree of

karyotypic complexity. The most involved chromosomes in CCRs were the chromosomes 8 and 11, resulting in the

amplification of MYC (8q24.2) or lysine methyltransferase 2A (KMT2A) (11q23.3) . L′Abbate et al. (2018) analyzed

MYC amplicons in AML. Their results provide evidence that CCRs are not related to a single catastrophic event as the

chromothripsis model describes it but rather to an accumulative evolution . Marker chromosomes are rearranged

chromosomes whose genetic origin cannot be verified by conventional banding cytogenetics techniques . In AML,

Bochtler et al. (2017) reported that marker chromosomes could arise from CCRs and predict adverse prognosis .

Marker chromosomes were also suggested to be a risk classification factor for AML with adverse cytogenetics .

2.6. Epigenetic Regulation

Abnormalities in the epigenetic regulator Tet methylcytosine dioxygenase 2 (TET2) and Enhancer of zeste homolog 2

(EZH2) could induce CIN through the deregulation of histone modifications, which alters the chromatin structure and affect

gene expression . Mutations in the TET2 are among the most common mutations in AML . EZH2 is

located in 7q36.1, a chromosomal region affected by the loss of chromosome 7 (-7) or deletion of 7q, which reduces its

gene expression . The -7 and deletion of 7q are highly associated with CK and adverse prognosis . Wang et

al. (2020) reported that TET2 is hypermethylated (downregulated transcription) in 30% of AML patients. Alterations in the
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expression of TET2 or EZH2 also protects against apoptosis by an unknown mechanism . Göllner et al. (2017)

showed that EZH2 loss of function induced resistance to multiple drugs in AML . Interestingly, the expression levels of

the genes TET2 and EZH2 were also positively correlated to the CIN MAD2 and CDC20 genes expression levels .

The protein mitotic arrest deficient 2 (Mad2) and cell division cycle protein 20 homologue (CDC20) overexpression and

downregulation are frequently altered in many cancers and associated with CIN. Both proteins are essential for the mitotic

checkpoint, in which they act together as an APC/C inhibitor, preventing aneuploidy and, consequently, CIN .

Schvartzman et al. (2011) have shown, in a p53 mutant tumor model, that wtp53 represses mad2 and its upregulation is

necessary for CIN in AML . Overexpression of CDC20 is more present in aneuploid than euploid AML .
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