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Zinc finger and BTB domain-containing 20 (ZBTB20), which was initially identified in human dendritic cells, belongs to a

family of transcription factors (TFs) with an N-terminal BTB domain and one or more C-terminal DNA-binding zinc finger

domains. Under physiological conditions, ZBTB20 acts as a transcriptional repressor in cellular development and

differentiation, metabolism, and innate immunity. Interestingly, multiple lines of evidence from mice and human systems

have revealed the importance of ZBTB20 in the pathogenesis and development of cancers. ZBTB20 is not only a hotspot

of genetic variation or fusion in many types of human cancers, but also a key TF or intermediator involving in the

dysregulation of cancer cells. 
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1. Introduction

Zinc finger and BTB domain-containing (ZBTB) proteins are an evolutionarily conserved family of transcription factors

(TF), characterized by the presence of an N-terminal BTB domain and one or more C-terminal Cys2His2 (C2H2)/Krüppel-

type zinc finger (ZF) domains . So far, at least 49 ZBTB proteins have been identified in the human genome (Figure 1),

exhibiting diverse functions in both physiological and pathological conditions . Of these members, ZBTB20 was initially

identified as a dendritic cell (DC)-derived ZBTB protein (also named DPZF, HOF, or ZNF288) , acting mainly as a

transcription repressor involved in many biological processes, including cellular differentiation, developmental regulation,

innate immunity, and metabolism . ZBTB20 has also been increasingly identified as a key regulator in the

pathogenesis and development of human cancers. 

Figure 1. Schematic representation of ZBTB family members and their encoded domains. The sequences of ZBTB

proteins and their functional information are obtained from the UniProk Knowledgebase (UniProtKB)  and National

Center for Biotechnology Information (NCBI). aa, amino acids; BCL6, BCL6 transcription repressor (also known as

ZBTB27); BCL6B, also known as ZBTB28; BTB, bric-a-brac/tramtrack/broad complex; C2H2-type ZF, C-terminal

Cys2His2/Krüppel-type zinc finger; chr, chromosome; GZF1, GDNF-inducible zinc finger protein 1 (also known as

ZBTB23); HIC1, HIC ZBTB transcriptional repressor 1 (also known as ZBTB29); HIC2, also known as ZBTB30; MYNN,

myoneurin (also known as ZBTB31); NLS, nuclear localization signal; PATZ1, POZ/BTB and AT hook-containing zinc

finger 1 (also known as ZBTB19); ZNF131, zinc finger protein 131 (also known as ZBTB35).
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2. Functional Domains of ZBTB Proteins

2.1. The BTB Domain

The BTB domain, also known as the POZ (poxvirus and zinc finger) domain, is a conserved protein–protein interaction

motif widely distributed in the proteins of higher eukaryotes . It has approximately 100–120 amino acids (aa) within the

N terminus of ZBTB protein (Figure 1). Despite being structurally well conserved , the BTB domain participates in a

variety of cellular processes. It mediates not only the formation of homodimers, heterodimers, or multimers , but

also the recruitment of transcriptional regulators , hence allowing for diverse functions, ranging from transcriptional

repression  and cytoskeleton dynamics  to protein ubiquitination and degradation . BTB domains

are also capable of regulating gene expression through chromatin remodeling . Given its essential roles, the BTB

domain has become a promising target for some diseases. Numerous studies have demonstrated the successful

pharmacological inhibition of the BTB domain by small-molecule and peptide-mimicking compounds ,

although its therapeutic use needs further evaluation.

2.2. The C2H2-Type ZF Domain

The C2H2-type ZF domains are one of the most common DNA-binding motifs found in the TFs of higher eukaryotes .

The classical C2H2 domain has 25–30 aa with a left-handed ββα structure, which consists of a β-hairpin followed by an α-

helix. Although C2H2 domains contain highly conserved cysteine and histidine pairs, the other aa residues are variable

, and the number of C2H2-type ZF domains in each ZBTB protein varies too (Figure 1). These variations enable ZBTB

proteins to have a unique DNA-binding capability in a sequence-specific manner . Moreover, C2H2-type ZFs also

mediate protein–protein interactions. For example, the ZFs of ZBTB16 (also known as PLZF) mediates its interaction with

GATA-binding protein 2 (GATA2) . The association between ZBTB16 and the histone acetyltransferase E1A-binding

protein p300 (EP300) also depends on the acetylation of lysines in ZFs of ZBTB16 .

2.3. Other Known Domains

In addition to BTB and ZF domains, further sequence analyses have revealed other motifs or domains. So far, ZBTB14,

ZBTB33, myoneurin (MYNN, also known as ZBTB31), and zinc finger protein 131 (ZNF131, also known as ZBTB35) have

been identified to have one or two nuclear localization signals (NLS) (Figure 1), which are short peptides that act as a

signal fragment to mediate the transport of proteins from the cytoplasm into the nucleus . In addition, ZBTB24 and

POZ/BTB and AT hook-containing zinc finger 1 (PATZ1, also known as ZBTB19) contain an A-T hook (Figure 1), a DNA-

binding domain that interacts with the minor groove of AT-rich regions, thus facilitating the binding of other TFs .

Specifically, the A-T hook domain of ZBTB24 is essential for heterochromatin localization , whereas the region

containing the A-T hook of PATZ1 is sufficient to interact with ring finger protein 4 (RNF4), a transcriptional repressor .

2.4. The Linker Region

In nearly all ZBTB proteins, the BTB and ZF domains are connected by a long linker region, which is predicted to be

unstructured in most cases and confers flexible DNA-binding properties . However, very limited studies have been

carried out in this field. Based on the existing research, the linker region appears to act as a key mediator with specific

effects on the regulation of DNA-binding capacity and protein stability .

2.5. ZBTB Family Members

In humans, the ZBTB family comprises a large group of TFs, many of which serve as master regulators of developmental

events. Among them, BCL6 transcription repressor (BCL6), also known as ZBTB27, is a hallmark member controlling

germinal center (GC) formation and T follicular helper cell differentiation . By contrast, ZBTB16 directs the

function and development of natural killer T (NKT) cells ; ZBTB20 promotes plasma cell differentiation but restricts T-

cell memory differentiation ; ZBTB32 is essential for the proliferation of NK cells and limits the duration of antibody

recall responses . Due to their pivotal roles in hematopoiesis and immune responses, it is not surprising that

abnormal expression or dysfunction of ZBTB proteins leads to hematological malignancies. Indeed, the first characterized

mammalian ZBTB protein was from the study of chromosomal translocations in human acute promyelocytic leukemia

(APL). Analysis of the t (11;17) translocation from a case with APL led to the discovery of ZBTB16, which is fused to the

retinoic acid receptor alpha (RARA), resulting in the worst prognosis in APL . Another example is the deregulated BCL6

expression which not only causes B-cell lymphoma development  but also contributes to leukemia initiation .

Consequently, BCL6 has become an attractive therapeutic target for B-cell lymphomas and leukemias . In addition to

hematological malignancies, ZBTB family proteins are also involved in skeletal abnormalities , infertility ,

and neurological disorders .
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Of ZBTB family members, ZBTB20 encodes a 741-residue protein with an N-terminal BTB domain and 5 C2H2-type ZF

domains at the C terminus . Notably, ZBTB20 is localized on the chromosome 3 where BCL6 is located and shares

high homology to BCL6 with the identity of 56% in the BTB domain and 40% in the C2H2-type ZF domain; particularly,

ZBTB20 is widely expressed in hematopoietic tissues . These similarities imply that ZBTB20 may be highly close to

BCL6 with a certain role in hematopoiesis, immune responses, and oncogenesis.

3. Physiological Roles of ZBTB20

3.1. Lymphoid Development and Differentiation

ZBTB20 was originally identified in human DCs and widely expressed in hematopoietic tissues including the spleen,

lymph node, thymus, peripheral blood cells, and fetal liver . In mice, Zbtb20 is highly expressed in B1 and GC B cells

and reaches its highest level in mature plasma cells in the bone marrow (BM) . Of note, ectopic expression of Zbtb20 in

primary B cells facilitates plasma cell differentiation, whereas in plasma cells, Zbtb20 promotes cell longevity by inducing

cell survival and cell cycle arrest (Figure 2A) . These roles are opposite to those played by Bcl6, reflecting a possible

competition between Zbtb20 and Bcl6 for binding to common gene targets. Moreover, Zbtb20 is also required for long-

term antibody production and plasma cell persistence, specifically after alum-adjuvanted immunization , revealing

Zbtb20 as a potential molecular determinant to drive durable antibody response.

Figure 2. The physiological roles of Zbtb20 in mice. (A) Zbtb20 facilitates plasma cell differentiation via an

Irf4/Zbtb20/Prdm1 axis, in which Zbtb20 induction does not require Prdm1 but depends on Irf4 by directly binding to the

Zbtb20 promoter. Zbtb20 also induces cell survival and blocks cell cycle progression by regulating the Tnfrsf17, Mcl1, and

Cdkn2b genes, thus promoting plasma cell longevity. (B) In murine pancreatic β cells, Zbtb20 regulates glucose sensing

and insulin secretion by repressing Fbp1, which encodes a gluconeogenic enzyme that regulates glucose metabolism and

insulin secretion in β cells. ADP, adenosine diphosphate; ATP, adenosine triphosphate; cAMP, cyclic adenosine

monophosphate; Cdkn2b, cyclin-dependent kinase inhibitor 2B; F-1,6-BP, fructose-1,6-bisphosphate; F-6-P, fructose-6-

phosphate; Fbp1, fructose-1,6-bisphosphatase 1; G-6-P, glucose-6-phosphate; GSIS, glucose-stimulated insulin

secretion; Irf4, interferon regulatory factor 4; Mcl1, myeloid cell leukemia sequence 1; Pfk, phosphofructokinase. Prdm1,

PR domain-containing 1, with ZNF domain; Tnfrsf17, tumor necrosis factor receptor superfamily, member 17.

Apart from lymphoid differentiation, ZBTB20 is also involved in the functional roles of regulatory B/T (Breg/Treg) cells. In

mice, Zbtb20 is upregulated in Breg cells from all organs, suggesting that Zbtbt20 may serve as a potential marker gene

for Breg cells . By contrast, Zbtb20 expression defines the function of a subset of Treg cells involved in intestinal
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integrity . Specifically, nearly half of Zbtb20-expressing (Zbtb20 ) T cells express forkhead box protein P3 (FoxP3), a

lineage-defining transcription factor for Treg cells. These Zbtb20  Treg cells are enriched in the intestine and constitutively

transcribe interleukin 10 (IL10), a key cytokine for modulating intestinal homeostasis. As such, Zbtb20 conditional

knockout mice display severe intestinal inflammation and damage in response to induction of acute colitis, whereas

adoptive transfer of Zbtb20  Treg cells, but not non-Zbtb20 Tregs, rescues the mice from colitis. However, apart from the

intestine, Zbtb20  Treg cells with a similar ability to produce IL10 are also detected in the thymus and spleen, indicating

that Zbtb20  Tregs are a committed population rather than an induced effector.

3.2. Cellular Metabolism

In addition to T-cell immunometabolism mediated by Zbtb20, as mentioned , multiple lines of evidence have revealed

the function of ZBTB20 in the regulation of cellular metabolism. In Zbtb20-null mice, transcriptional profiling of liver tissue

reveals significant alterations in the expression of genes involved in glucose metabolism . Further analysis revealed that

Zbtb20 is abundantly expressed in pancreatic β cells and plays a key role in regulating glucose sensing and insulin

secretion via transcriptional repression of fructose-1,6-bisphosphatase 1 (Fbp1), a regulator of glucose metabolism and

insulin secretion in β cells  (Figure 2B). In hepatocytes, Zbtb20 also regulates plasma triglyceride metabolism by

repressing the transcriptional activity of lipoprotein lipase, highlighting a critical role of ZBTB20 for hepatic lipogenesis in

mice . Such metabolic disorders mediated by ZBTB20 become more evident in patients with Primrose syndrome, an

autosomal dominant disease caused by heterozygous missense variants in ZBTB20, manifested by multisystem failures

including disturbed lipid and glucose metabolism as well as mitochondrial dysfunction .

3.3. Neurodevelopment

In central nervous system (CNS), Zbtb20 was initially characterized in hippocampal neurons, cerebellar granule neurons,

and macroglia, and two Zbtb20 isoforms, designated Zbtb20(S) and Zbtb20(L), were identified . Ectopic expression of

Zbtb20(S) and/or Zbtb20(L) in non-hippocampal immature pyramidal neurons induces hippocampus (Hi)-like cortical

neurogenesis in the mouse brain, but similar phenotypes are observed in Zbtb20(S), Zbtb20(L), and Zbtb20(S/L)

transgenic mice, suggesting an overlap in function of these two isoforms . Furthermore, Zbtb20 has a dynamic

expression pattern in the germinative zones of the developing neocortex and serves as a regulator of the timed sequential

production of distinct neuronal fates during cortical neurogenesis .

Specifically, Zbtb20 is essential for the specification of hippocampal Cornu Ammonis 1 (CA1) field identity and the

postnatal survival of hippocampal neurons . The mice with specific deletion of Zbtb20 in mature CA1 pyramidal neurons

exhibit no obvious morphological abnormalities but display impaired Hi-dependent memory, demonstrating that Zbtb20 is

critical for both the specification of CA1 field identity in the developing Hi and Hi-dependent long-term memory formation

in mature CA1 cells . Subsequent studies further uncovered that Zbtb20 is highly expressed in all the mature endocrine

cell types of anterior pituitary, and its deficiency impairs anterior pituitary development. Zbtb20-null mice also display

severe defects in lactotrope specification and lineage expansion, pinpointing that Zbtb20 is a crucial determinant of

lactotrope specification . Recently, the same group dissected the roles of Zbtb20 in mature lactotropes.

3.4. Immune Response and Inflammation

Being a master regulator of lymphoid development and differentiation, ZBTB20 plays a key role in immune response and

inflammation. For instance, Zbtb20 promotes full activation of Toll-like receptor (TLR) signaling, a critical pathway in innate

response against invading pathogens; mechanistically, Zbtb20 enhances NF-κB activation by specifically repressing the

transcription of Nfkbia (IκBα), the canonical suppressor of NF-κB signaling, thus promoting TLR-triggered production of

proinflammatory cytokines and type I interferon (IFN) in macrophages . Consistent with this research, ZBTB20 affects

the outcome of chlamydia and salmonella infections through the suppression of multiple target genes including NFKBIA
. ZBTB20 has also been revealed to regulate cardiac allograft rejection via macrophage polarization and NF-κB-

mediated inflammation . Other than ZBTB20, circular RNA (circRNA) circZbtb20 has been newly identified to promote

the homeostasis and function of group 3 innate lymphoid cells (ILC3s), a group of innate effectors involved in host

defense against pathogens at the early stage . All these findings pinpoint that ZBTB20 is a pleotropic regulator of

immune response and inflammation.

4. ZBTB20 in Cancers

Despite the involvement of ZBTB20 in various cellular processes under healthy conditions, understanding of the roles of

ZBTB20 in malignancies is still in its infancy. Over the past decades, ZBTB20 has been well researched in liver cancer

even though most elegant investigations were limited to mice. In addition, many ZBTB20 variants have been identified in
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some cancers, but the pathogenic mechanisms are poorly understood. In this case, the researchers summarize the

known mechanisms and potential functions of ZBTB20 in different cancers (Table 1).

Table 1. Overview of ZBTB20 roles in cancers. 

Cancer Type Potential Function/Mechanism Ref.

HCC

Mice

Transcriptional repression of the Afp gene

(1) Promotion of liver regeneration

(2) Regulation of the hepatic expression of Egfr

One of nineteen highly significant candidate locus implicated

in mouse HCC

Humans

Reactivation of AFP via the miR-122-mediated regulation

An independent marker for poor prognosis in human HCC

Promotion of HCC by suppressing FOXO1

Promotion of HCC by correlation with SETD7

Suppression of HCV infection

Association with HBV integration frequency

GC Humans

Identification of rs9841504 as a new susceptibility locus for

non-cardia GC in the Chinese population

Association of rs9841504 with severe intestinal

metaplasia/atypical hyperplasia in the Chinese population

Identification of rs758277701 in the MSI subtype of GC in the

Korean population

Identification of rs9288999 as a protective factor for reducing

GC risk in the Chinese Han population

Promotion of GC via the NFKBIA/NF-κB signaling pathway
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Cancer Type Potential Function/Mechanism Ref.

CNS

cancer
Humans

Glioma A mutation hotspot

Neuronal and mixed

neuronal-glial tumors

Implication of miRNAs that target ZBTB20 in the classification

of pediatric cases

Low-grade glioma
Identification of ZBTB20-AS4 as a critical IncRNA for

predicting the prognosis

Shh-MB
Identification of the fusion transcripts of ZBTB20 as recurrent

fusions

Glioblastoma
Promotion of glioblastoma through the miR-758-5p/ZBTB20

axis or by ZBTB20

Blood

cancer
Humans

B-CLL
The top differentially expressed gene in terms of VH mutation

status

AML

Promotion of cell growth and migration via the

LINC00641/miR-378a/ZBTB20 axis

Promotion of malignant phenotypes via the circ-SFMBT2/miR-

582-3p/ZBTB20 axis

Promotion of leukemia development via the circ-

0001602/miR-192-5p/ZBTB20 axis

MCL

(1) A novel downstream target repressed by BACH1

(2) Involvement in the BACH1-mediated regulation of tumor

immune microenvironment
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Cancer Type Potential Function/Mechanism Ref.

Others Humans

BC

Downregulation in ERα  BC biopsies upon treatment of

aromatase inhibitors

Upregulation in ERα  BC cell lines upon anacardic acid

treatment

Promotion of cell migration and invasion via the SNHG8/miR-

634/ZBTB20 axis

Promotion of cell proliferation, migration, and invasion via the

circ-0104345/miR-876-3p/ZBTB20 axis

Colorectal cancer
Identification of rs10511330 and rs16822593 as two of the top

10 SNPs in patients

Cervical cancer One of ten potential driver genes

NSCLC
(1) Upregulation in NSCLC tissues

(2) Promotion of cell proliferation by repressing FOXO1

Ovarian cancer

Increase in cells that migrate in omentum tissue pretreated

with extracellular vesicles isolated from ascitic supernatant of

high-grade patients

Note: AML, acute myeloid leukemia; AFP/Afp, alpha-fetoprotein; BACH1, BTB and CNC homology 1; BC, breast cancer;

B-CLL, B-cell chronic lymphoblastic leukemia; circ-SFMBT2, circular RNA Scm-like with four mbt domains 2; Egfr,

epithelial growth factor receptor; ERα , estrogen receptor α positive; FOXO1, forkhead box O1; GC, gastric cancer; HBV,

hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; IncRNA, long non-coding RNA; miRNA,

microRNA; MCL, mantle cell lymphoma; MSI, microsatellite instability; NSCLC, non-small cell lung cancer; Ref.,

references; SETD7, SET domain-containing 7; Shh-MB, Sonic Hedgehog medulloblastoma; SNHG8, small nucleolus

RNA host gene 8; SNPs, single nucleotide polymorphisms.
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