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Simultaneous Localization and Mapping (SLAM) systems have shown significant performance, accuracy, and

efficiency gains, especially when Neural Radiance Fields (NeRFs) are implemented. NeRF-based SLAM in

mapping aims to implicitly understand irregular environmental information using large-scale parameters of deep

learning networks in a data-driven manner so that specific environmental information can be predicted from a given

perspective. NeRF-based SLAM in tracking jointly optimizes camera pose and implicit scene network parameters

through inverse rendering or combines VO and NeRF mapping to achieve real-time positioning and mapping. 

SLAM  NeRF  robotics  3D reconstruction

1. NeRF-Based SLAM in Mapping

1.1. Map Representations

According to different structures and models of learning, implicit modeling methods are divided into fully implicit

modeling methods based on multilayer perceptron, modeling methods based on high-dimensional feature

networks, and modeling methods based on high-dimensional feature points. Modeling methods based on multi-

layer perceptron are pure end-to-end learning methods that require regression learning of large-scale, highly non-

linear geometric and texture information of the environment. These methods tend to cause challenges, including

difficulty with effective convergence of the model, difficulty with timely and accurate updating, and insufficient

generalizability across multiple environments. To address these issues, scholars have proposed modeling methods

based on high-dimensional feature networks and modeling methods based on high-dimensional feature points.

Modeling methods based on high-dimensional feature grids adopt a structured way to make the model better

understand the spatial structure by gridding the environmental information. Modeling methods based on high-

dimensional feature points are explicit and implicit hybrid strategies that improve modeling by focusing on important

feature points. These methods are proposed to overcome the limitations of pure end-to-end modeling methods,

make the model more robust and generalized, and better adapt to highly nonlinear geometric information and

texture information in complex environments.

Implicit Representations

In order to achieve real-time mapping, iMAP  uses a single MLP network with a smaller network architecture.

Meanwhile, in order to capture more geometric information, the 3D coordinates are upgraded to n-dimensional

space by a Fourier feature network, which is used as the MLP network input. The color and volume density
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obtained as decoded by the MLP network are used to jointly render the depth and color of the map. Also, to reduce

computational consumption, only 200 points are sampled for each image in each iteration. In addition, rendering

loss is used to actively sample areas that require higher detail and areas where mapping is not yet accurate. Since

iMAP uses an MLP network, catastrophic forgetting is unavoidable. To solve this problem , Suar and Liu et al.

used an incremental approach to select representative keyframes with information gain and to form a memory bank

collection of selected keyframes, which was used to continuously optimize the map in the back-end. At the same

time, the selection of keyframes is controlled by the normalized depth error to adapt to the change in the camera’s

distance from the object. However, the expression ability of a single MLP network is limited. In order to achieve

real-time performance, rendering performance is sacrificed. And its failure to consider reflections causes some

photometric errors.

In order to solve the problem that only 3D coordinates as inputs leads to poor generalization. DeepSDF  encodes

the object’s shape as a feature vector and combines the feature vector with the 3D coordinates as the network

inputs. DeepSDF first randomly defines the feature vector of the object and then uses it as the network input to

decode the SDF value. Finally, DeepSDF optimizes the feature vector by back-propagating the SDF value error.

This auto-decoder method is more robust than the auto-encoder method. However, generalization by the auto-

encoder is obviously better than that of the auto-decoder. In order to solve this problem, DeepSDF only uses part

of the sampling points when performing feature vector inference and uses all of the sampling points when

reconstructing the target object, and it updates the network weight by the back-propagation error.

Implicit Joint Representations using Voxels

The iMAP model is a fully implicit representation, but the training speed of this representation is slower than that of

the traditional SLAM mapping methods, and the map is not scalable. The advantage of NeRF lies in its advanced

rendering equations rather than MLP networks, so photo-level rendering of NeRF can be realized if the map

supports rendering. Therefore, various researchers have proposed combining a traditional explicit network and an

implicit network to get a new way of environmental representation. In this part, modeling methods based on high-

dimensional feature networks are unfolded and analyzed. This involves dividing the map into single or multiple

voxel grids with different resolutions and storing the feature vectors by using the displayed voxel grids. Then, the

model decodes the feature vectors by using a perceptron network during rendering to obtain the SDF values and

RGB values or occupancy rates and RGB values.

Inspired by Mip-NeRF 360 , which uses different MLPs to store the foreground and the background, NICE-SLAM

represents the scene with a nested grid of voxels of three different resolutions: mid-level, fine-level, and coarse-

level. Feature vectors are stored in the voxel grids, and the network ID is pretrained by trilinear interpolation. Four

different MLP networks are applied to complete the map: mid-level is used to optimize the grid features; fine-level

is used to capture smaller, high-frequency geometric details; and coarse-level is used to capture large-scale

features, such as objects with geometric structures such as floors, and it is used to predict unobserved geometric

features, thus giving the system predictive power for unseen perspectives; color-level stores color information to

generate more detailed color representations in the scene, thereby improving the accuracy of the tracking thread.
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Finally, the depth and color of the reconstructed map are obtained through joint rendering of the volume density

and color. In order to solve the forgetting problem, keyframe selection follows the iMAP approach and is selected in

an incremental way. Meanwhile, NICE-SLAM deletes pixels with high depths or dark colors during the mapping

process: effectively ignoring dynamic objects and improving system robustness.

NICER-SLAM , as a successor to NICE-SLAM, does not require the input of RGB-D information: it only needs to

be provided with RGB information. The voxels still follow the coarse–medium–fine three-layer voxel division of

NICE-SLAM, but NICER-SLAM decodes out the SDF value instead of the volume density. Because the SDF value

is better than the volume density for mapping, NICER-SLAM also introduces locally adaptive transformations that

can dynamically adjust the smoothness of the SDF value in different regions. So it can better adapt to the

geometric complexity of the map. The RGB observation alone suffers from serious ambiguity, so five kinds of

losses including depth loss, normal vector loss, and optical flow loss are fused to improve the mapping quality.

However, due to the complexity of the loss function used, although the mapping effect is better than that of the

original NICE-SLAM, the real-time performance is greatly reduced. And it does not solve the most serious

localization problem of NICE-SLAM: there remains more lifting space.

Although the rendering speed of NICE-SLAM is greatly improved compared to that of iMAP, its dense voxel grid is

pre-allocated: it still cannot realize expansion of the map and is not suitable for large outdoor scenes. Moreover,

NICE-SLAM uses a pretrained geometry decoder, which greatly reduces its generalization ability. To address this

problem, Vox-Fusion  dynamically allocates new voxels by using an explicit octree structure and encodes the

voxel coordinates by Morton coding to improve the voxel retrieval speed. Thus, the system can incrementally

expand the implicit scene to complete a mapping of large outdoor scenes. In contrast to iMAP and NICE-SLAM,

which use MLP networks to decode voxel density, Vox-Fusion uses feature embedding as the MLP network input,

directly decodes the SDF values, and renders a map with the SDF value. SDF values can provide richer local

geometric information about surfaces as well as distance information, which can support light tracing to improve

the rendering quality and geometric accuracy of the scene. Light tracing can be used for high-precision collision

detection and to create various visual effects, and thus, it is widely used in VR, AR, and game development.

Although it has been experimentally proven that SDF values are better for mapping, they also lose the rendering

advantage brought by the volume density and lose the ability to fit some new perspectives.

Wang et al.  proposed a neural RGB-D SLAM system, Co-SLAM, based on a hybrid representation. Co-SLAM

proposed loss functions with depths, colors, SDF values, and feature smoothness in order to realize the

supervision of accurate and smooth mapping scenes. These loss functions help the model to better adapt to the

geometric and color features of the scene in the training process. Additional sampling near the surface points

speeds up the convergence of the network. High-fidelity reproduction of maps based on coordinate representations

is possible due to the continuity and smoothness of an MLP network. But the inherent limitations of MLP often lead

to slower convergence and catastrophic forgetting when used. Real-time mapping for SLAM cannot be achieved.

The current implicit network representation method has achieved better results, but it still cannot effectively deal

with poor lighting conditions and large-scale scenes. To solve the occlusion problem and to supervise sampling the
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points behind objects, Yan and Shi et al.  introduced the concept of generalized thickness for modeling, which

regards the generalized thickness as a random variable. The probability of each point on the light line to be

occupied is derived by applying a prior on the generalized thickness. This method can supervise directly in 3D

space without 2D rendering. Binary cross-entropy loss is applied to the occupancy function and uncertainty factors

are considered in the binary cross-entropy loss so that the model can deal with complex scenes more robustly.

However, required manual adjustment to the generalized thickness prior causes difficulty with generalization; this

problem needs to be solved by introducing a learnable prior in the later stage.

In global sampling, the majority of points fall in free space. A large number of invalid points are generated at the

beginning of sampling, which makes network convergence slow. In order to accelerate the training speed, Shi and

Yang et al.  proposed a mapping method based on a three-layer sampling strategy. In addition to global

sampling, local sampling is introduced. However, the sampling effects of local sampling and global sampling are

basically the same as the number of iterations increases, which leads to a lack of surface information. Therefore,

near-ground sampling is added to emphasize the penalty of noise near the surface. In addition to this, to adapt to

scene changes, Shi and Yang et al. also estimate a dynamic boundary. To trade-off between point cloud density

and computational efficiency, keyframes are selected every three frames, while to solve the forgetting problem,

75% of the points in the previous keyframes are selected in each iteration, and 25% of the points from the latest

keyframes are selected for the network update.

Isaacson and Kuang et al.  improve mapping accuracy by introducing a novel dynamic edge loss function that

combines depth loss and sky loss. The dynamic edge loss function is based on Jensen–Shannon divergence,

which assigns unique edges to each LiDAR ray to improve training convergence speed and mapping accuracy.

This loss function uses dynamic edge sizes by measuring the differences between the learning degrees for

different map regions, allowing the system to retain and refine the learned geometric information while learning

new regions. The JS dynamic margin uses a larger margin for rays pointing toward regions of the map with

unknown geometries while using a smaller margin for rays pointing toward well-learned regions. In addition,

LONER uses depth loss to measure the error between the rendered depth and the LiDAR-measured depth. And it

introduces sky loss to force the weight of the rays pointing to the sky to be zero.

NICE-SLAM uses three voxel grids with different resolutions to represent the scene. Zhong and Pan et al. 

stitched and merged the eigenvalues of voxel grids with different resolutions stored in octree nodes after trilinear

interpolation, which improved the modeling effect for different spatial resolutions. The fused feature values are

input into an MLP network to decode the SDF values of the corresponding points, thus better capturing the

geometry of the scene. To solve the problem of catastrophic forgetting brought by MLP networks. SHINE-Mapping

limits the updates to the weights by adding regular terms to the loss function: that is, each iteration only updates

the weight values that have less impact on the previously learned frames to ensure that the current update does

not have a significant impact on the previously modeled region. This improves the model’s ability to retain historical

knowledge during incremental mapping and reduces the risk of forgetting previous data.
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Liu and Chen et al.  introduced local maps and global maps. The size of a local map is set according to the

sensor’s range and the size of the task space. The model also uses an independent encoder and decoder. A

freeze–activate mechanism is used to transfer submaps between the system memory and video memory for real-

time training on large-scale scenes. The sigmoid function is used to map the SDF values to the range (0, 1) to cope

with the effects of noise and sensor errors. Eikonal regularization is also introduced to obtain an accurate and

continuous signed distance field, especially in regions far away from the object to avoid over-smoothing. To avoid

catastrophic forgetting, local maps are used to accumulate historical input points, i.e., points retained only within

the scope of the local map. And downsampling is performed when the number of historical points exceeds the

threshold. After a certain number of frames of training, the decoder parameters are fixed to prevent inconsistency

in the decoder parameters over time. However, parameter fixation can solve the catastrophic forgetting problem to

a certain extent, but historical information loss and blurring may still occur with long-time mapping, and MLP

network parameter fixation cause a decline in generalization ability.

Yu and Liu et al.  used the same map representation method as Vox-Fusion and called it the Neural Feature

Volume. In order to effectively estimate surfaces in a scene in the early stages of training, NF-Atlas introduces a

differentiable range approximation method. A SLAM method is established by combining all measurement models

(such as range measurements, SDF measurements, and semantic measurements) into a maximum a posteriori

problem. The map can be efficiently constructed and regularized by different priors.

Li and Zhao et al.  combine a discriminative model and a generative model. The discriminative model uses

sparse convolution to extract the shape prior, while the generative model uses an MLP network to decode the SDF

values for subsequent map rendering. This hybrid structure improves the flexibility and performance of the model.

To improve the accuracy of the decoded SDF value, the Eikonal equation constraint, normal vector constraint,

function value constraint, and off-plane point constraint are combined. And a training method based on a loss

function is used to optimize the network parameters by minimizing the loss function. The LODE method also

demonstrates adaptability to semantic extensions and can be extended to implicit semantic completion problems in

two ways. This further extends the applicability of the method to different application scenarios. In contrast,

Wiesamann and Guadagnino et al.  approximated the direction to the nearest surface by using gradient

information, and they estimated the distance to the nearest surface through direction projection. A weight strategy

is introduced to prioritize nearby surface points, and additional loss is added to ensure that the sampling points are

located on the surface. NeRF-SLAM  uses dense depth maps as inputs to optimize the parameters of the neural

volume and the camera pose. Combined with the uncertainty of a dense depth map, a depth loss function for

weighted depth loss is proposed to reduce the bias during map construction due to noise.

NeRF-LOAM  adopts the octree form and recursively divides voxels into leaf nodes. Meanwhile, a new loss term

is introduced to distinguish surface SDF values from non-surface SDF values, which is more suitable for the

outdoor environment of SLAM. In terms of sampling point selection, the near-surface points on a ray that intersects

the currently selected voxel are prioritized, which accelerates the convergence speed of the network. To avoid the

catastrophic forgetting problem caused by MLP networks, Deng and Chen et al. added a keyframe buffer to

selectively add keyframes. GO-SLAM  aims to provide real-time mapping: that is, fast rendering of the
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reconstructed scene and ensuring that the mapping maintains global consistency after updating. In order to

achieve this goal, a keyframe selection strategy is introduced to sort keyframes. According to the pose differences

between them, the model prioritizes the keyframes for which the pose difference is the largest and keeps two of the

most delicate keyframes and unoptimized keyframes, which can be efficiently updated and reconstructed to avoid

excessive computational overhead.

The summary of NeRF-based SLAM methods are shown in Table 1.

Table 1. Summary of NeRF-based SLAM methods.

Implicit Joint Representations Using Points

Although voxel-grid-based methods can recover high-quality maps and textures, they require a large number of

sampling points, which inevitably leads to slow training convergence and affects the real-time performance of the

system. Point-SLAM introduces the concept of neural point clouds and defines a set of neural point clouds, in

which the location information, geometrical features, and color features are stored. A point addition strategy for

dynamic point density is adopted. The search radius changes according to the color gradient, and the compression

level and memory usage are controlled to achieve higher point density in areas that require detailed modeling and

lower point density in areas with less detailed information. This strategy flexibly explores the scene by gradually

increasing the neural point cloud without specifying the scene boundary in advance, which improves the perception

and robustness of modeling. Compared with the traditional voxel-based method, it does not have to consider the

blank regions between the camera and object surfaces, has fewer sampling points, and converges faster, which

Method Name Year Utilized Sensors Decoded Parameters
RGB-D RGB LiDAR SDF Density Color

NICE-SLAM 2022 ✓    ✓ ✓

Vox-Fusion 2022 ✓   ✓  ✓

NICER-SLAM 2023  ✓  ✓  ✓

Co-SLAM 2023 ✓   ✓  ✓

LONER 2023   ✓  ✓ ✓

Shine-mapping 2023   ✓ ✓  ✓

NF-Atlas 2023   ✓ ✓  ✓

LODE 2023   ✓ ✓  ✓

NeRF-LOAM 2023   ✓ ✓  ✓

LocNDF 2023   ✓ ✓  ✓
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makes it suitable for online scene mapping. The depth information is synthesized through a combination of uniform

sampling in the image plane and gradient-driven sampling, and the neural point cloud is updated based on deep

camera noise features.

1.2. Map Encoding

Parametric Encoding

Parametric encoding aims at arranging additional trainable parameters in the auxiliary data structure and finding

and interpolating these parameters according to the input vectors 𝑥∈𝑅 . Its encoding trades a larger memory

footprint in exchange for smaller computational cost. Both NeRF-SLAM and SHINE-Mapping use the same

encoding method as instant-NGP. Feature vectors are stored in a compact spatial hash table that does not depend

on a priori knowledge of the scene geometry. The feature values interpolated by voxels of different resolutions are

fused and are then used as the MLP network input to decode the SDF value. This approach yields a greater

degree of adaptability compared to traditional parameter encoding.

In order to solve the problem of low accuracy in small instance mapping, Shi and Yang et al. encode shapes by

introducing potential vectors: expressing the process of instance mapping by probabilistic inference. And they use

the obtained shape coding and 3D coordinate series as input. SDF values are obtained by decoding, which makes

the surface of the reconstructed instance smoother.

Frequency Encoding

Taking iMAP as an example, an implicit network representation uses sinusoidal or other types frequency

embedding to map the coordinates of the input points to high-dimensional space in order to capture high-frequency

details that are essential for high-fidelity geometric mapping. The iMAP model improves the 3D coordinates in n-

dimensional space sin(𝛽𝑝) by means of the Gaussian positional embedding method proposed in the Fourier feature

network. In addition to connecting this representation as the network input, it is also connected to the activation

layer of the network, and allows optimization of the embedding matrix B. It is implemented as a single fully

connected layer with sinusoidal activation. NICE-SLAM employs the same strategy for encoding, using different

frequencies to map the representation into voxel grids with different resolutions.

Mixture Encoding

To improve the training speed, many researchers have used acceleration methods such as instant-NGP to improve

the performance of MLP itself. Instant-NPG is fast to train, but it is discontinuous at many places in space because

it uses hash coding. While methods based on parameter coding improve computational efficiency, they lack the

ability to fill in holes and have poor smoothness. To solve this problem, Co-SLAM proposed a coding method that

combines coordinate coding and parametric coding and introduces one-blob coding into traditional parametric

coding. One-blob coding and multi-resolution hash coding are input into the geometry decoder to obtain SDF

𝑑
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values and feature vectors, and the decoded feature vectors and one-blob coding are input into the color decoder

to obtain RGB values.

2. NeRF-Based-SLAM in Tracking

NeRF-based SLAM can be divided into two main methods in the tracking stages: One uses inverse rendering of

NeRF to jointly optimize the camera pose and network parameters through photometric loss. The other uses

traditional visual odometry as the front-end, while NeRF mapping is the back-end, and the front and back are

decoupled for joint optimization.

2.1. The Method of Inverting NeRF

Both iMAP and NICE-SLAM use a tracking approach similar to iNeRF. They use inverse rendering to self

supervise. By implementing two processes in parallel, the pose of the latest frame is optimized at a higher

frequency than joint optimization, which helps to optimize small displacements to the camera more robustly. A

modified geometric loss function is used to improve the robustness of tracking based on the line-of-sight overlap

between the current frame and the keyframe. A coarse feature grid can be divided across previously unseen

regions, allowing effective tracking even when most of the region is unseen. In order to deal with huge

redundancies in video images, representative keyframes with information gain are selected incrementally. At the

same time, the selection of keyframes is controlled by a normalized depth error to accommodate for variations to

the camera’s distance from the object. However, inverse rendering processes are sensitive to the initial pose.

When the pose deviation is large, the mapping effect is greatly reduced. Therefore, how to improve the accuracy of

the initial pose when applying NeRF inverse rendering is still a major difficulty.

In large-scale scenarios, Yu and Liu et al. use pose maps to generate multiple neural feature volumes as nodes. By

using the edge between nodes to represent the relative pose between adjacent volumes, an elastic neural feature

field is established. An incremental mapping strategy is adopted to construct neural feature volumes progressively

through a series of poses and measurements. The initial pose of each neural feature volume is fixed, and as the

map is built, past neural feature volumes are frozen and new volumes are gradually initialized. NF-Altas assures

that the local region of the map is captured efficiently and limits the computational complexity. Compared with

existing methods, the method proposed by NF-Altas does not need to be reconstructed after loop detection. It only

needs to refine the initial pose of the neural feature volume to match the trajectory of the updated robot.

Meanwhile, loop detection updating is based on volume measurements and uses NeRF inverse rendering to guide

pose estimation, which improves the robustness of the system for tracking in large-scale scenarios. In addition, NF-

Altas supports on-demand global mapping to extract maps from multiple neural feature volumes, enables flexible

and efficient access to the global map, and avoids global map parameter updates.

2.2. The Method of VO
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Orbeez-SLAM  follows the tracking strategy of ORB-SLAM2 and uses feature matching to obtain the camera

pose and to optimize pose estimation by minimizing the reprojection error. After a triangulation step of the visual

odometer, new map points are added to the local map, and BA is used to further minimize the reprojection error.

The consistency of the map is improved by optimizing the pose of the keyframe and the settable map points. To

further speed up the rendering process, the concept of density is introduced, while robustness to surfaces is

improved by storing the number of samples per voxel. To reduce noise, only the points within voxels that are

frequently scanned by light are measured by triangulation so as to ensure the reliability of the map. Chun and

Tseng et al. continued ORB-SLAM2, took new keyframes, stored sparse point cloud maps from the mapping

thread, utilized point cloud sparsity to improve NeRF sampling efficiency, sampled near sparse map points, and

used a voxel skipping strategy to improve network convergence speed. This method is equivalent to using

traditional visual odometry as the front-end and the NeRF map as the back-end, decoupling the front- and back-

ends, and combining the methods on both sides. Specifically, it generates a sparse point cloud by ORB-SLAM2

and samples the sparse point cloud. Then it uses a voxel skipping strategy to decode the voxel, using an implicit

network to get the color information for rendering. Although excellent tracking effects and better rendering quality

can be achieved at the same time, NeRF plays a limited role in tracking, and the front- and back-ends are not well

integrated.

Although iMAP and NICE-SLAM use inverse rendering for joint optimization of network parameters and camera

poses, they are not accurate enough due to the lack of loop detection and BA. Although Orbeez-SLAM applies

traditional loop detection to improve tracking accuracy, it cannot update the scene representation after loop

detection. To solve the above problems, the three parallel processes of NEGL-SLAM (tracking, dynamic local map,

and loop closure) ensure high-speed training and fast response to loops, enabling the system to meet the low

latency requirements of practical applications. NEGL-SLAM  follows the ORB-SLAM3 tracking strategy and

represents the whole scene with multiple local maps, avoiding the need to retrain the whole scene representation

in the single volumetric implicit neural method, for which the time consumption of retraining the whole scene

representation is required. NEGL-SLAM also performs global BA during loop detection. In order to avoid the

trajectory jump problem caused by global BA in traditional methods, after global BA, the model undergoes two-

stage optimization. The first stage corrects the errors between local maps in real time, and the second stage

eliminates small errors in sub-real-time optimization and improves the accuracy of scene representation.

GO-SLAM uses the RAFT  algorithm for optical flow computation; RAFT can be used to process monocular,

binocular, or RGB-D camera inputs. Based on the average values of optical flow calculations, new keyframe

initializations for front-end tracking are implemented. And a local keyframe map is established for loop detection by

selecting high common-view keyframe connections. An efficient connection between local keyframes is realized by

using common-view matrix and optical flow computation. In addition to this, Zhang and Tosi et al. run global BA in a

separate thread and use global geometric features to reduce the real-time requirements of global BA, making it

more efficient for processing tens of thousands of input frames. By establishing a global keyframe map, online

global BA is realized, and the global consistency of the trajectory is improved.
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NeRF-SLAM uses Droid-SLAM  for tracking. It uses an architecture similar to that of RAFT to solve the optical

flow between frames: generating a new optical flow and weight for each optical flow measurement. The BA

problem is then solved by densifying the optical flow and weight and representing the 3D geometry of each

keyframe with an inverse depth map: transforming the problem into a linear least squares problem. Using block

partitions based on Hessian matrixes, the edge covariances of dense depth maps and poses are calculated to

provide estimations of depth and pose uncertainty.

LocNDF uses a learned NDF to achieve accurate registration of point clouds to maps through nonlinear least

squares optimization without searching for corresponding points for ICP optimization. With the obtained movement

direction and distance, the robot moves directly in the direction without searching for corresponding points, which

simplifies the traditional ICP method. Global positioning in NDF is achieved using MCL positioning. A particle filter

is used to estimate the robot’s pose through a motion model and an observation model, where the observation

model is based on the distance between the measured point cloud and the NDF.

3. Loss Function

Eikonial loss: The eikonal loss is a constraint on the gradient that requires the second derivative of the gradient to

be equal to one, which can ensure the rationality of the deformation space.

 

Photometric loss: The photometric loss is the L1-norm between the rendered and measured color values.

 

where 𝐼  is the predicted color, 𝐼̂ is the true color, and 𝑢,𝑣 is the corresponding pixel on the image plane.

Geometric loss: The geometric loss measures the depth difference.

 

where 𝐷  is the predicted depth value, �̂�  is the true depth value, and 𝑢,𝑣 is the corresponding pixel on the image

plane.
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