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With the significant increase in cyber-attacks and attempts to gain unauthorised access to systems and

information, Network Intrusion-Detection Systems (NIDSs) have become essential detection tools. Anomaly-based

systems use machine learning techniques to distinguish between normal and anomalous traffic. They do this by

using training datasets that have been previously gathered and labelled, allowing them to learn to detect anomalies

in future data. However, such datasets can be accidentally or deliberately contaminated, compromising the

performance of NIDS.
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1. Introduction

Network Intrusion-Detection Systems (NIDSs) represent a primary cybersecurity mechanism for identifying

potential attacks on a communication network. To accomplish this goal, they analyse the network traffic passing

through the system, regardless of whether it is internally generated or originated from external entities targeting the

network. Detecting intrusions allows network administrators to become aware of system vulnerabilities and to make

quick decisions to abort or mitigate attacks. Additionally, NIDSs allow them to implement measures to strengthen

the system in the future .

NIDSs can be categorised into various typologies based on two fundamental principles: architecture and

techniques employed. Focusing on the architecture, NIDS can be classified as host-based, network-based, and

collaborative approaches between different components. According to the detection technique, the classification

may be signature-based, Stateful Protocol Analysis-based, or anomaly detection-based NIDSs .

Signature-based NIDSs possess a repository of network patterns representing prevalent network attacks. Their

operating mode is to match the network sequence they examine with their knowledge base to detect potential

attacks .

Alternatively, Stateful Protocol Analysis-based NIDSs rely on their comprehensive understanding of the monitored

protocol. They analyse all interactions to identify a sequence of actions that might result in a vulnerability or

insecurity .
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In contrast, anomaly-detection-based NIDSs employ mechanisms to detect abnormal network traffic behaviour.

These anomalous activities typically correspond to network traffic patterns that have a significantly low likelihood of

occurring or are markedly misaligned with normal traffic. Acutely objective, anomaly detection allows for the

handling of novel or previously unknown attacks (zero days). This is because such attacks generate traffic patterns

that have not been found before, and this type of NIDS often relies on the use of machine learning techniques to

carry out anomaly detection. When this approach is followed, the subjective evaluation of attacks is effectively

circumvented.

Different strategies have been employed to detect anomalies in NIDS through various machine learning techniques

, including statistical techniques like Principal Component Analysis (PCA)  or Markov models ;

classification techniques like Artificial Neural Networks (ANNs) , Support Vector Machines (SVMs) ,

deep learning models  including Autoencoders , or Decision Trees including Random Forest ; and

clustering like outlier detection . Using these techniques requires a multi-perspective approach to tackling the

problem, which can be categorised as supervised, semi-supervised, or unsupervised, depending on the specific

technique chosen .

Regardless of the technique used for anomaly detection in NIDS, the underlying models must be trained to

distinguish normal traffic from anomalous traffic. This training process utilises datasets comprising real, synthetic,

or a combination of both network traffic. To be more concise,

Synthetic traffic datasets are created by generating traffic in a controlled environment that emulates a real-

world setting. The generated traffic may include traffic related to known attacks, providing enough samples for

machine learning models to competently identify and detect such anomalies. This enables the optimisation of

the dataset regarding the size and balance between regular and irregular traffic samples. It also ensures the

correct labelling of each observation as it has been intentionally and deliberately generated. Such observations

can be, for instance, the traffic flows seen in the network. However, a potential issue is that it may not

accurately reflect the network traffic patterns observed in a genuine environment.

Real traffic datasets capture all network communications within a real productive environment. This implies

access to the patterns of network traffic consumption and usage that take place in an actual scenario and

potentially any cyber-attacks that may occur. Unlike synthetic datasets, real traffic samples may be biased or

imbalanced, with the presence of anomalous traffic often being minimal or completely absent. It is necessary to

carry out a subsequent process to assign a normality or attack label to each flow for its use in machine learning

models during training phases.

Composite datasets are the ones generated by combining real environment data and synthetic traffic to

introduce attack patterns.

Regardless of the AI model used in a NIDS, the dataset’s labelling accuracy is crucial to maintaining high model

performance. This principle applies equally to supervised and unsupervised learning. In supervised learning,
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labelling is necessary to enable models to learn how to identify anomalous traffic. In contrast, unsupervised

learning generally assumes that the training dataset consists of normal traffic only and is, therefore, free of

anomalies.

2. Datasets for Network Security Purposes

To effectively train any AI model, especially those constituting NIDSs based on anomaly detection, a prerequisite is

a comprehensive dataset. This dataset should encompass a sufficient number of samples that represent all the

various classes or patterns, whether benign or malicious. This foundational dataset enables the model to learn and

predict accurately during subsequent training phases. In the specific case of NIDSs, a large and correctly labelled

dataset is assumed . The quality of the trained models depends to some extent on the quality of the data on

which they were trained , so it is important to make a thorough analysis of the typology of datasets available in

the NIDS domain.

Before reviewing the different datasets available in the field of cybersecurity, it is necessary to define the criteria

according to which these datasets will be analysed:

Availability: Understood as free access (Public) to the dataset or, on the contrary, of reserved access, by

means of payment or explicit request (Protected).

Collected data: Some datasets collect traffic packet for each packet (e.g., PCAP files), others collect

information associated with traffic flows between devices (e.g., NetFlow), and others extract features from the

flows by combining them with data extracted from the packets.

Labelling: This refers to whether each observation in the dataset has been identified as normal, anomalous, or

even belonging to a known attack. Or, conversely, no labelling is available, in which case they are intended for

unsupervised learning models.

Type: The nature of a dataset may be synthetic, where the process and environment in which the dataset is

generated are controlled, or it may be the result of capturing traffic in a real environment.

Duration: Network traffic datasets consist of network traffic recorded over a specific time interval, which may

range from hours to days, months, or even years.

Size: the depth of the dataset in terms of the number of records or the physical size and their distribution across

the different classes.

Freshness: It is also important to consider the year in which the dataset was created, as the evolution of

attacks and network usage patterns may not be reflected in older datasets, thus compromising their validity in

addressing current issues.
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A summary of the datasets analysed according to the characteristics described above is shown in Table 1.

Table 1. Overview of available network datasets.

* N.S. means not specified. ** Expressed in flows (f.), observations (o.), or packets (p.). An observation denotes a

data point with all specified features.

2.1. DARPA Datasets

Created by MIT’s Lincoln Laboratory, the DARPA datasets, with KDD datasets, are perhaps the most widely used

in the field of intrusion-detection systems . There are two versions, one created in 1998 and the other in 1999.

Both collect synthetically generated network packets in controlled network environments simulating network traffic

patterns previously observed in production environments. In the case of the 1998 version, the duration of the

training subset is seven weeks of data, while in the 1999 version, the training subset consists of only three weeks

of observations. In both cases, two weeks of observed network traffic is reserved for validation. All observations are

labelled and contain a total of 200 observations of up to 58 attacks of different typologies, including different

versions of denial of service (DoS), port scanning, and user-to-root (U2R) or remote-to-local attacks (R2L) .

References

1. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection
system: A systematic study of machine learning and deep learning approaches. Trans. Emerg.
Telecommun. Technol. 2021, 32, e4150.

2. Liao, H.J.; Richard Lin, C.H.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive
review. J. Netw. Comput. Appl. 2013, 36, 16–24.

3. Murali, A.; Rao, M. A Survey on Intrusion Detection Approaches. In Proceedings of the 2005
International Conference on Information and Communication Technologies, Karachi, Pakistan,
27–28 August 2005; pp. 233–240.

4. Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest
technological trends. Comput. Netw. 2007, 51, 3448–3470.

Dataset AvailabilityCollected
Data Labeled Type Duration

* Size ** Year Freshness Balanced

DARPA Public packets yes synthetic
7

weeks
6.5TB

1998–
1999

questioned no

NSL-KDD
Public features yes synthetic N.S. 5M o.

1998–
1999

questioned yes

Kyoto
2006+ Public features yes real 9 years

93M
o.

2006–
2015

yes yes

Botnet Public packets yes synthetic N.S.
14GB

p.
2010–
2014

yes yes

UNSW-
NB15 Public features yes synthetic

31
hours

2.5M
o.

2015 yes no

UGR’16 Public flows yes real
6

months
17B f. 2016 yes no

CICIDS2017
Protected flows yes synthetic 5 days

3.1M
f.

2017 yes no

IDS2018 Protected features yes synthetic
10

days
1M o. 2018 yes no

NF-UQ-
NIDS Public flows yes synthetic N.S.

12M
f.

2021 yes no
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These datasets, despite the year they were built, are still used today in various scenarios and their usefulness

seems to be proven , although there are some studies that question their reliability .

2.2. KDD Dataset

KDD99  is a dataset created for the Third International Knowledge Discovery and Data Mining Tools Competition

based on the DARPA dataset. Unlike the latter, KDD99 is a dataset whose format is based on the extraction of

features (up to 41 ) from network flows rather than the recording of raw observed data. It is a synthetic dataset

but takes into account the actual traffic observed in military network environments. Access to the dataset is open,

and, despite its longevity, it is still available. In terms of size, the dataset contains almost 5 million observations,

including the same typology of attacks as DARPA, i.e., DoS, port scanning and privilege escalation attacks.

Similar to DARPA, although it is a widely employed dataset, criticisms have emerged regarding its usability.

Specifically, concerns have been raised about the lack of consistency between the number of attack types in the

training subset and those available in the validation subset . Additionally, the dataset is deemed outdated in the

context of contemporary world communications.

2.3. NSL-KDD Dataset

In 2009, to reduce the original DARPA and KDD problems, Tavallaee et al.  created a new version of KDD called

NSL-KDD . In this version, the authors removed all redundant records and added new synthetic ones based on

the correctly labelled records of the original dataset, so that those record types with a lower presence in the original

dataset had a higher presence in the new dataset and vice versa. As for the test dataset, it was completely

regenerated. The result is a public dataset that is slightly more balanced, but with a very significant reduction in

size, with just over 125 K observations in the training and 22.5 K in the testing set.

Even with the revision of the KDD dataset and the application of techniques to rebalance and address consistency

issues, it continues to share the problems of its KDD and DARPA predecessors. Specifically, it relies on 1998

network traffic, rendering it outdated in the context of modern network communications and contemporary cyber-

attacks.

2.4. Kyoto 2006+ Dataset

Given the shortcomings of datasets such as DARPA and KDD with their variants related to the longevity of their

data, in 2006, Song et al.  published a new dataset called Kyoto 2006+, the result of recording real traffic from

32 honeypots with different characteristics from November 2006 to August 2009 (almost three years), totalling

more than 93 million observations . Since its initial publication, the authors have expanded the dataset to cover

a total of nine years of traffic (up to 2015), adding more honeypots to reach the final figure of 348, including DNS

servers to generate benign traffic. Each record in the dataset provides a total of 24 features associated with the

captured network traffic flows, of which a total of 14 are present in datasets such as DARPA or KDD, while the

remaining 10 are new additions, including the labelling of the records, as well as the typology of the detected
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attack. This dataset is probably the public dataset of real traffic with the greatest historical depth on record, but, in

spite of this, it is still quite balanced.

2.5. Botnet Dataset

Biglar Beigi et al.  have developed a public dataset focused on botnet attacks, as they believed that this type of

attack is currently the most challenging . This dataset contains a total of 16 different botnet attack typologies,

covering both centralised and decentralised attack strategies. In order to construct this synthetic dataset, the

researchers analysed different datasets by combining subsets of three different datasets (ISOT , ISCX 2012 IDS

dataset , and Botnet Traffic Generated by the Malware Capture Facility Project or CTU-13 ) using the overlay

methodology described in  that ensures the cohesion of the resulting data. The result is a dataset of tagged

network packets with a total of almost 14 GB of information and a balance between normal and anomalous traffic

of almost 55% and 45%, respectively, which is quite balanced.

2.6. UNSW-NB15

The Cyber Range Lab at the Australian Centre for Cyber Security generated the synthetic UNSW-NB15  dataset

in 2015 using the IXIA Perfect Storm traffic generator. The simulation environment used to generate the samples

consists of three servers, two of which generate benign traffic, while the third is used to generate traffic associated

with various attacks such as DoS, exploits, and rootkits. The dataset size is reduced, reaching a total of 31 h in two

subsets of 16 and 15 h, respectively, with just under 2.5 million observations, 12% of which correspond to

anomalies or attacks. Labels are available for each flow, indicating whether it is normal or not, as well as the attack

category to which it belongs. Finally, the data are available in packet format (PCAP) as a version of 49 features

extracted from the captured flows.

2.7. UGR’16

The UGR’16 dataset  was created by the University of Granada in 2016 as a result of capturing the real network

traffic of a medium-sized ISP between March and June 2016. Subsequently, during the months of July and August,

different attacks such as DoS, botnet, or port scanning were deliberately generated on the same ISP to capture all

the traffic so that this subset could be used as a test. The dataset consists of NetFlow traffic flows with almost 17

billion different connections, of which more than 98% were normal traffic, making it very imbalanced. After the traffic

was captured, state-of-the-art anomaly detection and network attack identification techniques were employed to tag

the dataset. This involved assigning each record a label indicating the type of attack to which it belonged. Given

the size of the dataset and its temporal proximity, it is an updated and current dataset for use in building or training

AI and NIDS models.

2.8. CIC Datasets

The Canadian Institute for Cybersecurity (CIC) has generated several datasets to validate the performance of

NIDS or to train the models underlying these NIDS. Among the various datasets available, the following should be

Information Security; Springer: Boston, MA, USA, 2007; pp. 83–107.
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20. Camacho, J.; Wasielewska, K.; Espinosa, P.; Fuentes-García, M. Quality In/Quality Out: Data
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the NOMS 2023—2023 IEEE/IFIP Network Operations and Management Symposium, Miami, FL,
USA, 8–12 May 2023; pp. 1–5.

21. Lippmann, R.; Haines, J.W.; Fried, D.J.; Korba, J.; Das, K. The 1999 DARPA off-line intrusion
detection evaluation. Comput. Netw. 2000, 34, 579–595.

22. Salvatore Stolfo, W.F. KDD Cup 1999 Data; UCI Machine Learning Repository, 1999.

23. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data
set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and
Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6.

24. Biglar Beigi, E.; Hadian Jazi, H.; Stakhanova, N.; Ghorbani, A.A. Towards effective feature
selection in machine learning-based botnet detection approaches. In Proceedings of the 2014
IEEE Conference on Communications and Network Security, San Francisco, CA, USA, 29–31
October 2014; pp. 247–255.
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73, 411–424.

27. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. Toward Generating a New Intrusion Detection
Dataset and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference
on Information Systems Security and Privacy, Funchal, Madeira, Portugal, 22–24 January 2018;
pp. 108–116.
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highlighted:

CICIDS2017 : Generated in 2017, it is a synthetic network traffic dataset generated in a controlled

environment for a total of 5 days, available on request (it is protected). The captured data are in packet and flow

formats, although they are also available in extracted feature format with a total of 80 different features. The

captured traffic is tagged, and the different attacks that each record corresponds to, including DoS, SSH, and

botnet attacks, are marked in the tag.

CSE-CIC-IDS2018 : This is a synthetic dataset generated in 2018 specifically based on network traffic

intrusion criteria. It includes DoS attacks, web attacks, and network infiltration, among others, recorded on more

than 400 different hosts. As with CICIDS2017, the data are in packet and flow formatw but with a version

containing 80 extracted features, and access requires a prior request (protected). Unlike CICIDS2017, it is

modifiable and extensible.

2.9. NF-UQ-NIDS

Sarhan et al.  have created a synthetic dataset specifically created for machine learning-based NIDSs . This

dataset is the result of combining four datasets used in the NIDS domain but transformed into a netflow version.

Two of the datasets used have been analysed previously in this research (UNSW-NB15  and CSE-CIC-IDS2018

), while the other two (BoT-IoT  and ToN-IoT ) are datasets generated by the Cyber Range Lab of the

Australian Centre for Cyber Security (ACCS). The result is a dataset that contains flows from different networks

with different configurations, making it more universal than the datasets of which it is composed. The original

dataset to which each flow belongs is available, allowing us to know under which scenario or network a NIDS

trained with NF-UQ-NIDS can be more or less effective. The dataset contains almost 12 M records, 76.77% of

which correspond to normal traffic, while the remaining 23.33% correspond to the 20 types of attacks it contains,

making it an imbalanced dataset. It was published in 2021, so it is a dataset that can be considered up-to-date and

incorporates the latest types of attacks.

3. Dealing with Labelling Problems in Datasets and the
Techniques to Address Them

Classification problems, whether supervised or unsupervised learning, require a sufficiently large dataset that is

correctly labelled. In the case of supervised learning, the labelling is used so that the model learns to distinguish

the different classes that make up the universe being treated. However, when the problem is approached from an

unsupervised learning perspective, such as anomaly detection, the training dataset is expected to belong to the

same class. This setup enables the model to learn to identify anomalies by recognizing deviations from the

patterns present in the training set. The process of creating a dataset is therefore very important, as it determines

the potential success of the machine learning models that will use it.

Proceedings of the 10th EAI International Conference, BDTA 2020, and 13th EAI International
Conference on Wireless Internet, WiCON 2020, Virtual Event, 11 December 2020; Deze, Z.,
Huang, H., Hou, R., Rho, S., Chilamkurti, N., Eds.; Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland,
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The processes of tagging the data that make up a dataset involve the application of automated techniques, as well

as manual processes, which together can be subject to error . To mitigate this problem, some papers present

methods or techniques to reduce the mislabelling that occurs. For example, Kremer et al.  propose a model that

tries to detect the noise in the labelling based on loss functions that are insensitive to noise and at the same time

tries to infer the possible noise in the labelling and in the classification itself . On the other hand, Zhang et al. 

propose a framework called Adaptive Voting Noise Correction (AVNC), which aims to identify and correct incorrect

labelling . However, even the application of these techniques does not guarantee the correct labelling of the

dataset.

When the labelling of the data that make up a dataset is performed manually, there is a risk of unintentional bias

that is intrinsic to the observed data. To address this scenario, a methodology is proposed in , whose aim is to

relabel the data, eliminating the possible bias of the initial labelling, achieving good results in a computational

perception problem on galaxy detection.

The impact of noise on labelling in artificial intelligence models has also been analysed in several works in a way

that relativises its impact. For example, Natarajan et al.  propose in  a simple loss estimator that is unbiased

and minimises the risk of the presence of mislabelled data. Another approach, as proposed by Patrini et al. ,

focuses on tackling the issue of noise in labelling, particularly in scenarios involving deep learning models,

including recurrent neural networks. The researchers suggest two procedures to correct the loss function in

instances of mislabelled data . More recent is the work of Wei et al. , who this problem and propose two

datasets with noise in the labelling to serve as a benchmark to measure how robust the models or techniques are

to errors in the labelling .

Of particular relevance is the work of Northcutt et al. , which analyses the quality of labelling in test subsets of

10 datasets, as opposed to the work presented above, which focuses on the quality of labelling of the training data.

This approach is particularly interesting as the test subsets are assumed to be perfectly labelled, as they are the

test and evaluation mechanism by which the models are tested and validated . Labelling errors in such a dataset

can destabilise the performance of machine learning models. The datasets tested are those commonly used in the

field of computational perception (such as MNIST or ImageNet), in the field of language processing (such as IMDB

or Amazon Reviews), and finally in the field of audio processing (AudioSet). The results obtained show that there

are labelling errors that, in some cases, reach up to 10% of the labelling error.

Confident Learning (CL) is a subfield of machine learning between supervised and semi-supervised learning that

focuses on characterising noise in the labelling to find and correct errors in the labelling in order to train robust

models. To achieve this, they use data-pruning techniques to clean the dataset before training the models. In , a

generalised CL strategy is proposed that is able to find the errors in the labelling by estimating the correct

distribution of correct and incorrect labels. Furthermore, it is tested on image datasets, yielding models with higher

performance than some of the best state-of-the-art models.
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Müller and Markert  propose a tool to detect errors in the labelling of image, text and numerical datasets . As

a result of the application of this tool, the set of observations of the dataset with a high probability of being

mislabelled is obtained. This method has been tested on a total of 29 different datasets, both real and synthetic

and, according to its authors, has been able to find mislabelling in some of them that had not been detected before.

The application of computational perception techniques in medicine is also subject to the risks associated with

mislabelling, especially when the goal is to detect the presence of possible tumours. In , the researchers

addressed this problem by proposing a methodology to identify labelling errors in images associated with the

presence of breast cancer. To achieve this, they propose a function that measures the deviation between the

prediction made by the model and the real value of the sample (called Cross-Entropy loss). Additionally, they put

forward another function that assesses the model’s dependence on the dataset, known as the Influence function.

The method is evaluated on a set of 10,500 images in which up to 98% of labelling errors are detected.

Another methodology in the field of image processing is proposed in , where the aim is to train a deep learning

model with a dataset where there is no confidence in the labelling of the data. To do this, the model adjusts the

internal parameters of the neural network while learning the distribution of noise in the labelling and testing it

against classical back-propagation models where the goodness of the labelling is assumed.

In the specific area of datasets aimed at addressing cybersecurity or network traffic problems, previous work is

more limited, as the generation of these datasets has additional complications with respect to the more general use

cases. In , Cordero et al.  the problem is reviewed through a comprehensive analysis of various datasets

intended for NIDS. The researchers put forth an enhancement to the Intrusion-Detection Dataset Toolkit (ID2T)

dataset generation methodology. Subsequently, they evaluate the effectiveness of the proposed ID2T improvement

by assessing datasets generated after its application.

The problem of labelling in the field of network traffic is more complex, since it requires specific low-level

knowledge of the traffic in order to be able to correctly classify each flow. In , an analysis of the methods used

for labelling this type of dataset, both automatic and manual, is carried out, identifying the weaknesses of each of

the techniques along with their advantages and disadvantages.

Finally, to conclude this analysis of the state of the art in dataset quality, in , an approach to measuring the

quality of a network traffic dataset is presented. This quality is used to compare two datasets, to decide if they are

equivalent, or if a better quality dataset is found, whether or not it is appropriate to retrain the machine learning

models. The proposal for measuring the quality of a dataset is based on the criteria: (i) completeness as the

probability that a dataset record can occur in the domain of the machine learning model to be built and (ii) reliability

as the probability of occurrence of misclassified or mislabelled data for each possible class. Based on these two

criteria, the applicability of a network traffic dataset to a particular problem can be determined.
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