
Applications of Kapok Fiber
Subjects: Energy & Fuels

Contributor: Abdelmoumin Yahia Zerga, Muhammad Tahir

Photocatalytic Kapok fiber is recognized as one of the most resilient and effective material sources accessible for

environmental rehabilitation and energy production due to its exceptional photocatalytic performance, hollow structure,

great renewability, and compressibility. There are, however, few detailed reviews on this matter with strong photocatalytic

activity. Therefore, the most recent explosive advancement in photocatalytic kapok fiber, including various kapok fiber

materials and overall fabrication methodologies, was examined to evaluate this advanced research. Pollutant absorption,

photocatalytic degradation, hydrogen production, and CO  reduction were the main applications of this photocatalytic

Kapok fiber.

Keywords: kapok fiber ; hydrogen production ; adsorption ; degradation

1. Photocatalytic Hydrogen Production

Compared to various organic fuels, hydrogen is designated as a sustainable solar energy source, with a thermal efficiency

of 120–142 MJ kg . Currently, the global generation of hydrogen exceeds 44.5 million tons , and it will be the primary

generator of power until 2080 . However, there are numerous methods for producing hydrogen-like substances, and the

most common is thermolysis , electrolysis , biomass , photolysis , and hydrolysis . Photocatalytic water

dissociation is a successful technology that has received a lot of interest due to its broad application for power and

sustainability purposes. Artificial photosynthesis is one of the only sustainable, long-term answers to the forthcoming fuel

and environmental crises . A group of scientists has already investigated several photocatalyst substances .

Nevertheless, the majority of photocatalysts respond to ultraviolet (UV) light, which accounts for only 5% of solar energies

. TiO  has been intensively investigated as a prospective option for hydrogen production due to its acclaimed physical

and chemical qualities, high permanence, earth-abundant, low cost, and non-toxicity. However, its large bandgap (3.0–3.2

eV) limits its absorptivity range . Furthermore, graphitic carbon nitride (g-C N ) has received a great deal of attention

due to its physical and chemical characteristics, low cost, earth-abundant, simple preparation, renewability, and, most

importantly, visible light responsiveness due to a narrow bandgap of 2.7 eV . However, the photocatalytic

performance is limited by the high recombination rate and low surface area. Although several scientists have examined

the heterojunction of TiO  and g-C N  since it has a high surface area, decreases electrons recombination, and absorbs

visible light. The photocatalytic performance has not progressed significantly .

The hydrothermal bio-template procedure was used to generate a C-doped g-C N  effectively using the carbonization

procedure at 500 °C and nitrogen-coated titanium dioxide as a core-shell heterojunction photocatalyst. During

constructing a core-shell heterojunction photocatalyst, kapok fiber was exploited as a bio-template and in-situ carbon

coated in CN and titanium dioxide. Furthermore, urea application as a g-C N  precursor contributes to band-gap

narrowing in TiO  via in-situ C and N loading. Several characterization approaches were used to investigate the impact of

TiO  source amount on the formation of core-shell nanocomposite heterojunction photocatalysts, which can impact and

enhance catalytic performance. The photoelectrochemical and photoluminescence investigations revealed that the bio-

template core-shell nanocomposite heterojunction photocatalysts had a remarkable improvement in photoinduced

electron-hole dissociation performance. The improved photogenerated charge carrier dispersion and shorter band gap

lead to enhanced photocatalytic activity, with the CCN/T-1.5 material producing the most hydrogen (625.5 μmol h  g ) in

methanol medium .

Based on Wang et al., 2014, the generated KF with or CKF/AuNPs/CTS nano-composites exhibit excellent catalytic

performance and durability for the catalytic reduction decolorization of CR dye, with the color of the CR solution rapidly

fading within Three minutes at a modest catalyst dosing of 0.3 g/L. Furthermore, after 20 min of sonication or 1 mol/L acid

treatment, the nanocomposite’s catalytic performance can be sustained. The hydrogen was created concurrently with the

catalytic decolorization of CR and can be recovered as a clean, renewable energy, with a total output of 430 mL/L. As a

result, the nanostructure could be utilized as a catalyst to decolorize dye effluent and create H  in a single cycle . The
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absorbance peak at 533 nm was definitely observable in the UV–vis spectra of KF/CTS/AuNPs and CKF/CTS/AuNPs,

confirming that the AuNPs were effectively bonded on the membrane of CTS-coated KF and CKF as predicted . This

finding is also clearly displayed in the test procedure, where the purple-red AuNPs solution becomes colorless when

added to CTS-coated KF or CKF.

The application of the nano-structure as a catalyst is critical to practical usage. It can be noticed that the color removal

rate has not decreased significantly, and 92.6% of the original dye removal rate was attained following nine recoveries.

This suggests that the nanocomposite could be used as a reusable catalytic substance for dye removal.

In summary, inserting kapok fiber-based carbon loading in the semiconductor structure using a simple bio-template

synthesis technique can improve photocatalytic hydrogen generation in pure semiconductors. Furthermore, a well-

constructed mesoporous micro-tubular structure was produced during the fabrication of a C-doped semiconductor

employing treated kapok fiber. The generated C-doped semiconductor’s band gap structure and quantity of carbon doping

may be easily modified using various impregnation processes. It should be highlighted that the significant increase in

photocatalytic performance was due to improved light absorption, an acceptable energy band gap, and quick

photogenerated carrier transfer and separation. Developing the C-doped semiconductor-based heterojunction

photocatalyst in conjunction with other semiconductor materials can also aid in creating a highly excellent photocatalyst.

2. Photocatalytic Degradation

Several years ago, the elimination of color was accomplished through adsorbents depending on electron-hole pair

contact. However, changes in the shape and texture of photocatalytic components have a favorable impact on the

characteristics, such as surface area and photon carrying capacity, which is accompanied by the mobilization of electrons

and holes along with the shape . Several studies have proven the multiple photocatalytic abilities of several

photocatalytic substances for the degradation of various organic molecules available in water, particularly colors, up to the

present day . All of these research findings on photocatalytic applications for contaminant degradation show

that the bandgap, electron-hole recombination rate, size and shape, crystallinity, phase composition, light infiltration

through photocatalytic substances, surface area, and dye adsorption potential on the surface of photocatalysts are

important criteria for photocatalytic operation improvement. . Depending on this, scientists have become interested in

producing higher surface area photocatalysts, which can offer a larger surface area and more significant dye adsorption

on the interface of these compounds.

Metal sulfide-based semiconductors are the most notable photocatalysts among the highly regarded photocatalysts for the

removal or dissolution of colors in wastewater applications with minimal expenses, environmentally beneficial, and durable

treatment solutions for environmental preservation. In previous decades, environmental contamination has become a

severe hazard to the ecosystem and public safety. To combat pollution, loaded and heterojunction-based semiconductor

metal sulfide nanostructures (MSNSs) are being explored as photocatalysts for photocatalytic removal or to eliminate

massive industrial colors in an environmentally benign and durable approach. In the 1970s, the photocatalytic processing

of water splitting to produce hydrogen on semiconductor nanostructures was discovered. The project will then discover

the underlying mechanisms that result in photocatalysis and increase the system of photocatalytic removal performance

. The bandgap, surface area, quantity of catalyst, and formation of an electron-hole pair are all critical parameters in the

photocatalytic removal of hazardous chemicals in an aqueous medium. It has been discovered that, among all

parameters, the surface area has a crucial impact on the photocatalytic removal of colors by giving a larger surface area,

which results in the increase of dye particle adsorption on the membrane of the photocatalyst and increases photocatalytic

effectiveness. Based on the capacity to solve energy and environmental challenges, heterogeneous photocatalysis

utilizing semiconductors has gained a lot of interest in recent years as an environmentally friendly and durable solution.

Depending on heterogeneous photocatalysis, the analysis of the latest advancements in the synthesizing and usage of

semiconductor MSNSs as photocatalysts in the field of heterogeneous photocatalytic removal of multiple colorings by

ranging diverse settings like the size of the components, bandgap, light intensity, surface area, and dye solution

concentration levels; and their relations with aquatic pollutants .

3. Adsorption Using KF

Spontaneous and purposeful oil spills have emerged regularly throughout shipping, manufacturing, and refinement in

recent decades, resulting in significant negative consequences for individuals and the natural system . Oil-absorbing

substances are commonly recognized as the most successful for removing and recovering wasted oil. They are classified

into inorganic mineral substances, chemically synthesized polymers, and natural organic components . Graphite,

organic clay, vermiculite, silica, perlite, fly ash, and zeolites are examples of inorganic mineral minerals 
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. In recent decades, polyacrylate, polyethylene, and polypropylene, a new substance for adsorbing oil, are synthesized

organic polymers . Various agricultural items are used in organic natural resources, including cotton fiber,

kenaf, straw, milkweed, sawdust, and straw kapok fiber . Among these organic products, kapok offers several

benefits over typical oil-absorbing materials, including inexpensiveness, renewability, innate hydrophobicity, and high

sorption ability, making it desirable as an oil-absorbing substance . All recent research regarding the adsorption

application of kapok fiber is illustrated in Table 1.

Table 1. Summary of adsorption application of Kapok Fiber.

Materials Pollutants Adsorption Results References

Polyaniline-kapok fiber-nanocomposite Anionic-methyl-orange 136.75 mg/g

Kapok fiber Methylene blue 110.13 mg/g

Polyaniline-kapok fiber-nanocomposite Lead ions 78.34 mg/g

Polyacrylonitrile-coated-kapok hollow-microtube methyl-orange & Cu (II) ions 34.72/90.09 mg/g

Kapok fiber-oriented polyaniline Sulfonated dyes 192.3 mg/g

Kapok fiber-oriented polyaniline-nanofiber Cu (II) ions 145.54 mg/g

Polyaniline-coated kapok fiber Methyl-orange & copper (II)
ions 81.04 mg/g

Hydrophilic modified kapok fiber Lead(II) 94.41 mg/g

Acetylated modification kapok fiber Oil 84.4 g/g

Oxidized kapok fiber Pb, Cu, Cd and Zn 93.55%, 91.83%, 89.75%
and 92.85%

Kapok fiber-based carbon microtube aerogel Oil/organic solvents
98% (distillation)
97% (Squeezing)

90% (Combustion)

DTPA-modified kapok fiber Pb , Cd , Cu 310.6 mg/g, 163.7 mg/g,
101 mg/g

Kapok fiber Diesel 45 g/g

Kapok fiber Oil 32.31 g/g

Raw kapok fiber/pyridine-catalyzed kapok
Fiber/NBS-catalyzed kapok fiber Diesel

30.5 g/g
36.7 g/g
34 g/g

PBMA/SiO Diesel, Soybean oil, Crude
oil, 150SN, 20CST

99.7%, 65%, 41.1%, 23.1%
and 26.8%

PBMA-Kapok Fiber Toluene and chloroform 14.6 g/g and 26 g/g

Superhydrophobic—Kapok Fiber Diesel and Soybean oil 46.9 g/g and 58.8

Kapok Fiber—Dopamine Mercury 235.7 mg/g

4. Photocatalytic CO  Reduction

With global warming and resource scarcity becoming increasingly extreme, the electrochemical CO  minimization process

(ECO RR) is an effective and intriguing strategy to convert CO  into various valuation compounds as a carbon-neutral

way to a sustainable power source . Among the several compounds created by CO  electroreduction, formate or

formic acid is a significant fluid biofuel that can be effectively exploited as a super-economic power transporter in fuel cell

applications . Biodegradable resources (animal or botanic) are near-ideal solutions for the synthesis of several

high-production catalysts, which have numerous essential advantages, such as inexpensive cost, easy availability, and

molecular and geometrical variations . Kapok fiber is an organic porous fiber generated from the silk-cotton tree

with a significant cavity and a thinner covering and is used as an oil and heavy metal ion adsorbent . Furthermore,

kapok fiber is an ideal carbon source for the fabrication of electrochemical supercapacitors . The use of kapok fiber

in electrochemical CO  removal, on the other hand, has never been recorded. The enormous cylindrical form of kapok-

tubes is advantageous for carrying metal nanoparticles; also, kapok-tube has a high capacity for metal ion capturing due

to its numerous oxygen active element on the membranes . Most of the evidence suggests that it can be used as a
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novel carbon substrate to manufacture electrocatalysts. The kapok tube is mainly employed as a carbon electrocatalyst

for Carbon dioxide electroreduction, and it performs well for electrocatalytic Carbon dioxide to fluid energy conversion

without adding active components. Unlike typical carbon nanotubes and graphene, which have weak capacities for

formate generation without adding active components, this natural capacity may be attributed to the many mesoporous

structures found in MHKTs, which acted as functional spots for formate generation. Additionally, the kapok tube is used for

the first time as a novel catalyst substrate for depositing metal nanoparticles in electrocatalytic CO  removal. All the

metals in-situ bonded on MHKTs are manufactured using a simple one-pot synthetic technique. For the CO -to-formate

process, the four electro-catalysts, Sn, Bi, Pb, and Cd-MHKTs, exhibited great selection, low overpotential, high existing

density, and prolonged stability. These low-cost metal MHKT electrocatalysts offer many potential applications in

electrocatalytic CO  degradation to formate.

In conclusion, the usage of Kapok fiber for CO  conversion under visible light to create solar fuels is discussed, as well as

how various properties and structural adjustments may impact the processes and final products. The presence of a

flexible structure for adjusting band gaps and imparting lattice distortion allows kapok fiber to control separation, mobility,

and the lifetime of photogenerated charges. Demonstrating good selectivity for format generation across a wide range of

potentials. The use of kapok fiber offers fresh insight into the production of innovative carbon supports with suitable

photocatalytic characteristics.
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