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Considerable evidence now suggests that GRK5 can act as a molecular 'bridging' factor, allowing signaling

regulation in pathophysiological settings that can control the connectivity between both the cardiovascular and

neurophysiological complications of aging. 
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1. Role(s) of GRK5 in Molecular Aging

GRK5 (G protein-coupled receptor kinase 5) activity has been linked with multiple age-associated neoplastic,

metabolic, neurodegenerative and cardiovascular ailments . At the specific disease level, the expressional

regulation and activity of GRK5 has been linked with multiple age-related diseases such as type 2 diabetes mellitus

(T2DM) , cardiac hypertrophy , hypertension , Parkinson’s disease , and Alzheimer’s pathology in mice

and humans . As we age, a progressive dysfunction of multiple receptor signaling systems, across a broad range

of tissues, takes place. In this context of age-related receptor system dysfunction, the loss of signaling system

sensitivity has been most intensively studies for the insulinotropic signaling cascade. Disruption of the ability to

effectively sense, uptake and eventually metabolize glucose has been identified as a pivotal regulator of the rate of

aging in nearly every animal model tested . Many of the first genes identified in lower species that control animal

longevity were almost exclusively associated with the insulinotropic/insulin-like growth factor system . The

glycometabolic system, as well as the somatic sensitivity to insulin receptor functionality, is also strongly controlled

through the functional status of adipose tissue in the body, e.g., adiponectin release from white adipose tissue is a

potent insulin sensitizing factor . Commensurate with a potentially important role of GRK5 in aging, it has been

shown to be strongly expressed in adipose tissues, suggesting that its functionality may impact the glycoregulatory

system.  demonstrated that GRK5 genomic deletion in murine models resulted in the generation of significant

insulin resistance. In addition to this, genetic polymorphisms of GRK5 have been strongly associated with the

generation of T2DM  and the efficacy profile of anti-diabetic therapeutic agents . Furthermore, previous

studies performed in GRK5 knock-out mice (GRK5-KO) reinforced the importance of GRK5 in metabolism as these

animals displayed a decreased white adipose tissue mass, a lower weight gain, a decreased expression of

adipogenic genes and a reduced adipocyte differentiation when fed a high-fat diet . Although human data

linking GRK5 to metabolism are sparse, a recent genome-wide association study found a robust association of two
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single nucleotide polymorphisms (SNPs) in the GRK5 gene with apoB levels and total LDL-cholesterol, highlighting

the role of GRK5 in cholesterol metabolism.

As well as long-term dysfunction of metabolic signaling systems in the aging process, significant disruptions of

inflammatory mediator receptor systems are evident. This inflammatory signaling perturbation typically results in

the creation of chronic low-grade inflammatory syndrome, recently codified as “inflammaging” .

Inflammaging, as a process, has been proposed to be functionally independent of exogenous systemic infection 

. This chronic inflammatory condition has been linked to potentiated circulatory C-reactive peptide and IL-6

(interleukin 6) concentrations. Protracted exposure to these pro-inflammatory agents predisposes patients to an

increased incidence of obesity, premature immunological aging, vascular sclerosis and neurodegenerative

phenotypes . The inflammaging process itself appears to be closely tied to the mechanisms of whole-somatic

aging trajectory control. Hence, inflammaging has been strongly linked to the potentiation of nuclear factor-κB (NF-

κB) activity – a process that at the hypothalamic level seems to act as an arbiter of the aging process .

At a fundamental level NF-κB has been shown possess the ability to regulate the expression of GRK5  –

therefore these two systems in fact potentiate each other’s activity in a feed-forward loop, a mode of signaling

highly characteristic of the aging process itself. Demonstrating the intersection of GRK5 with the inflammatory

aging process, GRK5 has been shown to antagonize TLR4 (Toll-like receptor 4) mediated phosphorylation of the

NF-κB p105 protein. This action inhibits inflammatory mediator (lipopolysaccharide) sensitivity in macrophages .

Subsequent to the discovery of GRK5 regulation of p105,  reported that GRK5 binding to IκBα stabilizes this

protein and facilitates the nuclear accumulation of IκBα by masking and thus inhibiting its nuclear export signal

sequence. This nuclear accumulation of IκBα can then lead to decreased NF-κB activation in vascular endothelial

cells. Research from  employing a GRK5 knockout (KO) murine model confirmed that endothelial GRK5 likely

stabilizes IκBα in a manner reminiscent to previous studies . Using this model,   further demonstrated an

NF-κB inhibitory action of GRK5 in cardiac muscle cells.

Taken together, GRK5 is clearly a vital component in both energy metabolism and chronic inflammation paradigms.

It is interesting to note that both of these systems are known to strongly control molecular aging pathologies

implicated in many different human disorders and consequently in inflammatory pathways . These findings

therefore make GRK5 a potentially important therapeutic target in the treatment of age-related diseases such as

cardiovascular disease, neurological and metabolic disorders. In this review, we discuss the role of GRK5 in the

context of cardiovascular and neurodegenerative disease to emphasize its function in inflammaging.

2. The Role of GRK5 in Cardiovascular Disease Pathology

Cardiovascular pathophysiologies, such as myocardial ischemia, myocardial infarction or hypertension involve the

dysregulation of cardiac GPCR responsiveness, which in turn is partly induced by deleterious GRK signaling

activity profiles . The first cardiac GRK form identified was GRK2 , while the discovery of cardiac GRK5

came later . GRK5 was found to be highly expressed in the myocardium through several studies employing

genetically engineered mice with altered GRK5 levels . Homozygous GRK5-KO mice are born with a
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normal basal phenotype, although a loss of both GRK5 and GRK6 in mice results in lethality  . Further studies

in zebrafish lacking the GRK5 homolog Grk5l, suggested the importance of GRK5 fine tuning capacity in cardiac

development through the mTOR pathway. Hence, these Grk5l deficient fish demonstrated altered cardiac tissue

generation associated with premature loss of muscle cell progenitors leading to an imbalance of gross structure 

. Of note, GRK5 is shown to be up-regulated in heart failure . It has been demonstrated that elevation of

GRK5 expression in vascular smooth muscle cells (VSMCs) can also induce the development of high blood

pressure  via altered β1-adrenergic receptor (β1-AR) and angiotensin II (Ang II) receptor signaling dynamics 

. GRK5 functionality also appears to be linked to the generation of atherosclerotic vascular pathophysiologies.

Hence, the genomic deletion of GRK5 in an ApoE4-deficient murine background significantly accelerated the

creation of aortic atherosclerosis compared to control mice .

2.1. Cardiac failure

GRK5 appears to exert a pivotal role in cardiac failure and several cardiomyopathies including cardiac hypertrophy

. Cardiac hypertrophy refers to the abnormal enlargement, or thickening, of cardiac muscle. This thickening

can be caused by increases in cardiomyocyte size themselves or via changes in other cardiac muscular

components, such as extracellular matrix. Cardiac hypertrophy can be induced via physiological effects (e.g.,

elevated cardiovascular exercise) or as the result of pathophysiology (e.g., hypertension or valvular disease) .

In humans, four non-synonymous SNPs of GRK5 with translational significance have been demonstrated. Of these

known SNPs, the RH-domain resident Q41L polymorphism [leucine (L) converted to a glutamine (Q)] is highly

enriched amongst African-American (A-A) individuals . This divergent form of GRK5 possesses an augmented

capacity to desensitize β2-adrenergic receptors (β2ARs) , thus engendering a population specific cardiovascular

effect. The Q41L GRK5 variant appears to afford protection against congestive cardiac failure amongst A-A heart

failure patients . Reinforcing the potential protective capacity of GRK5 in the cardiac setting, increased GRK5

expression has been shown to attenuate cardiac burden in response to intense adrenergic stimulation . As

expected, a GRK5 activity blockade mediates the opposite effect, i.e., increased cardiac performance as well as

improved resilience in the context of heart failure . It has also been shown that functional GRK5 inhibition,

performed by ectopic expression of an N-terminal GRK5 peptide fragment of GRK5, reduces the extent of cardiac

muscle damage and attenuates the risk of heart failure .

During cardiac failure, the expression and activity of GRK5 are reflexively increased to enhance β-adrenergic

receptor desensitization and thus attenuate contractility . Activation of GPCRs by hypertrophic agonists, such as

phenylephrine and/or Ang II, engages a number of intracellular signaling pathways, including calcineurin-nuclear

factor of activated T cells (NFAT) , Ca /CaM – dependent kinase II (CamK II) , MAPKs  and the Akt-

mechanistic target of rapamycin (mTOR) pathway  among many others, that are important transducers of the

hypertrophic response.

GRK5 can undergo nuclear translocation in a calmodulin-dependent manner following Gα -based signals

emanating from α-adrenergic and Ang II receptors. This nuclear translocation of GRK5 has been shown to be
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mutually exclusive with its interaction with plasma membrane GPCRs – thus distinguishing canonical and non-

canonical GRK5 functions . This cellular redistribution is proposed to help mitigate the deleterious functions of

cardiac hypertrophy . Nuclear GRK5 migration is assisted through a productive interaction with

calcium sensing proteins (CSP)   – thus GRK5 is specifically sensitive to the presence of Ca /CaM .

Indeed, GRK5, possessing a high affinity for CaM, is rapidly inactivated in cells upon elevations in cytosolic

calcium. This aspect of GRK5 biology reinforces its pivotal role in the modulation of calcium-associated muscular

contractility .

It has been demonstrated that nuclear GRK5 acts as a class II histone deacetylase kinase (HDAC). In this scenario

it has been reported that GRK5 is able to phosphorylate HDAC5 (histone deactylase 5) . This GRK5-mediated

phosphorylation causes redistribution of HDCA5 out of the nucleus resulting in a function alleviation of its MEF2

(myocyte enhancer factor 2) transcription factor repression – leading to “de-repression” of MEF2. Demonstrating

the important role of GRK5 in cardiovascular aging this GRK5-mediated MEF2 activation transcribes multiple

genes associated with cardiac hypertrophy . GRK5 activity has further been shown to control hypertrophic

responses via its interaction in the nucleus with components of the NFAT pathway . GRK5 interacts with the

NFAT-pathway in the nucleus during pathological hypertrophy. In addition, it is clear that GRK5 is strongly

connected with the NF-κB signaling cascade  as an NF-κB binding element has been

identified within the GRK5 DNA promoter region. This functional signaling region has subsequently been

demonstrated to orchestrate the expression pattern of GRK5 in cardiac muscle cells .

Physiological hypertrophy does not only occur naturally in the heart due to augmented exercise regimens but also

during pregnancy  Non-pathological cardiac hypertrophy is a process typified by relatively normal and

proportionate myocyte growth – this reflexive response increases the capacity for cytoprotective cardiac activity 

. In contrast, pathological hypertrophy involves a disruption of the proportions of the new myocytes that causes

an eventual diminution of heart chamber volume with a concomitant augmentation of septal wall thickness .

Recent research has suggested that GRK5 is only a controller of non-pathological hypertrophy . In this research,

using TgGRK5 mice, it was shown that physical exercise induced a classical physiological cardiac hypertrophy

response. With specific respect to the nuclear functionality of GRK5 in cardiac hypertrophy it was shown in this

exercise context that minimal nuclear GRK5 activity was found . This corresponds with a study demonstrating

that NFAT was not shown to regulate physiological hypertrophy . While elevated levels of intracellular Ca

levels are common to both physiological and pathological cardiac hypertrophy, it has been proposed that

pathological hypertrophic effects are differentially controlled through distinct intracellular calcium stores. Thus

differential sources of “activating” calcium may allow the specific stimulation of the GRK5-related hallmarks of

pathological hypertrophy, i.e., nuclear GRK5 accumulation, HDAC kinase activity and increased NFAT activity.

Reinforcing the concept of differential hypertrophic mechanisms, none of these selective events are routinely found

in standard exercise-induced hypertrophic paradigms .

While GRK5 is evidently associated with deleterious cardiac signaling and cell growth, GRK5 does appear to

possess additional non-pathological roles in heart functionality. For example, GRK5 has been shown to be an

important intermediate in the mitogenic and pro-survival signaling cascades emanating from the β1-adrenergic
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receptor-mediated transactivation  of the epidermal growth factor receptor (EGFR) . Therefore, it appears that

GRK5 possesses a dual functionality with respect to cardiac activity, i.e., GRK5 is involved in both protective and

detrimental signaling events that are delineated via differential subcellular compartmentalization between nuclear

and non-nuclear sites.

2.2. Hypertension

The maintenance of well-controlled vascular blood pressure is imperative for effective and reliable delivery of

oxygenated blood to all major life-preserving organs. Significantly and chronically elevated blood pressure, i.e.,

hypertension, is a prominent risk-determining player in the etiological profile of multiple chronic conditions including

ischemic heart disease with associated subsequent cardiac and renal failure . The major organs and

processes that endogenously regulate vascular pressure include the kidney, heart and the contractile state of

VSMCs which regulates radial changes of blood vessels, thus modulating peripheral vascular resistance.

High blood pressure, with its associated stressful effects on vascular wall integrity, can result in the potentiation of

GRK5 expression within VSMCs. Associated with these observations it has been shown that Ang II stimulation of

VSMCs can also increase GRK5 expression levels in a calcium dependent manner . This association between

VSMC-based GRK5 expression and hypertension was again studied by  in which an ectopic increase of GRK5

expression in vessels was genetically engineered. GRK5 overexpression was subsequently found to induce a

gender-specific hypertensive response, i.e., blood pressure increases were much more profound in males

compared to females . Both male and female hypertension in these GRK5-overexpressing mice was ablated

upon treatment with the inhibitor of Gα  signaling, pertussis toxin. Further gender-specific effects on the

cardiovascular parameters of these GRK5-overexpressing mice were also apparent, e.g., β1-adrenergi receptor

signaling in males was altered while Ang II-mediated increased vascular tone was only found in females .

Interestingly, and in contrast to the reported overexpression of GRK2 in VSMCs, the elevation of GRK5 expression

failed to induce any significant cardiac hypertrophy .

2.3. Atherosclerosis

Atherosclerosis presents as a long-term inflammatory disease found primarily in the major arteries. This condition

is typified by the accumulation of oxidized low-density lipoproteins (LDL) within the arterial wall and a progressive

inflammatory cell infiltration into the vessel . The recruitment of inflammatory cells to these lesions is triggered

by the production of chemokines within the plaque microenvironment . Chemokine-stimulated GPCRs initiate

several downstream effectors, promoting actin polarization, shape changes and directed cell movement which

ultimately leads to atherosclerotic plaque formation .

GRK5 possesses the capacity to regulate signaling through multiple heptahelical receptors  including multiple

types that have been strongly linked to etiological activities in the atherosclerotic process .

Interestingly GRK5 has also been shown to phosphorylate other signal transduction proteins that can influence the

atherosclerotic process too, including p53 , IκBα , platelet derived growth factor receptor-β (PDGFRβ) 

[76] [77]

[78][79]

[80]

[40]

[40]

i

[40]

[39]

[81][82]

[82]

[83]

[4][84]

[85][86][87][88][89][90]

[91] [68][92] [93]



Multidimensional Roles of GRK5 in Molecular Aging | Encyclopedia.pub

https://encyclopedia.pub/entry/28231 6/21

 and HDCA5, via MEF2 activation . GRK5 can also stimulate anti-atherogenic signaling activity in model

systems. For example, GRK5-KO mice have an increase in lesion area when compared to wildtype mice through

two different cell-type regulatory mechanisms in monocyte/macrophages and VSMCs . In VSMCs, GRK5 is able

to promote the degradation of the pro-atherogenic platelet-derived growth factor receptor-β in lysosomes which is

thought to reduce platelet-derived growth factor-mediated VSMC proliferation and migration . GRK5 also

regulates monocyte chemotaxis; i.e., in vitro GRK5-KO monocytes possess increased migration capacity in

response to C-C chemokine ligand 2 (CCL2) (a ligand for the C-C chemokine receptor type 2 (CCR2) receptor) and

colony stimulating factor-1 (CSF1) (a ligand for the colony stimulating factor 1 receptor (CSF1R) tyrosine kinase)

. CCL2-mediated leukocyte migration is instrumental in atherosclerotic lesion progression and responsible for

the increased macrophage content in lesions from GRK5-KO mice. These findings highlight the potential

mechanisms in both monocyte retention and emigration after their migration across the endothelium and present

new strategies to limit atherosclerotic lesion progression.

3. GRK5 in Neurodegeneration

In contrast to its expression profile in cardiovascular organs, central nervous system (CNS) expression of GRK5 is

comparatively sparse  because of a low GRK5 expression in the majority of cortical areas, except for the

limbic system . As we have outlined previously there is emerging evidence that demonstrates the multiple non-

canonical roles of GRK5 outside of GPCR activity regulation. These novel effects of GRK5 are also associated with

multiple important neurophysiological functions. For example, GRK5 deficient mice display a specific and nuanced

subtype-specific muscarinic receptor dysfunction while closely-associated adrenergic and opioid receptor activity

was not altered . CNS muscarinic receptor activity has long been associated with the maintenance of

learning and memory behavior . Thus, it is unsurprising that GRK5-KO mice present with cognitive dysfunction

shown to correlate with hippocampal neurosynaptic failure . Again, as with the cardiovascular effects, gender

differences in GRK5 activity were seen with respect to neurodegenerative phenotypes, i.e., augmented axonal

defects and synaptic degenerative changes, were shown to be greater in female experimental animals as opposed

to males. In addition, at the molecular signaling level, hippocampal levels of the synaptosomal-associated protein

25 (SNAP25) and synaptophysin were significantly lower in females compared to males .

It has also been proposed that the involvement of GRK5 in dementia-related conditions is likely associated with its

potent role in regulating neurite outgrowth that is required c .

Obstructive sleep apnea (OSA) occurs in approximately 2 to 4% of middle-aged women and men, respectively.

Among these, OSA is also observed to be more common in obese patients, potentially due to increased tracheal

occlusion caused by excessive cervical adipose deposits. While OSA can induce health concerns with respect to

lack of effective sleep patterns, it is evident that OSA is also closely associated with intermittent cerebral hypoxia.

Considering this deleterious hemodynamic effect it is unsurprising that OSA has been shown to be a potent risk

factor for associated cognitive impairment in nearly a quarter of diagnosed OSA patients . At the molecular level

CNS hypoxic episodes can often result in the increased production rate of ROS – these oxygen species can rapidly

interact and modify a broad range of CNS lipids, nucleic acids and proteins. Enhanced CNS ROS production has
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therefore been associated vascular endothelial dysfunction, perturbations of blood-brain barrier integrity and

eventual neurosynaptic signal transduction dysfunction. Rodent models of intermittent hypoxia have been

developed to effectively replicate the OSA found in human patients . Using these, it has been demonstrated

that intermittent hypoxia effects upon behavioral rodent activity (anxiety, balance, short-term memory) are acutely

sensitive to, and potently augmented by, the genetic deletion of GRK5 . Such research suggests that part of

the CNS functionality of GRK5 may be associated with oxygen sensation neurochemistry, potentially via controlling

astrocytic functions.

3.1. GRK5 and Alzheimer’s disease (AD) pathology

For a significant period of time, undue focus on amyloid pathologies and their subsequent association with

Alzheimer’s disease (AD) has been in effect . However, and from a more therapeutically important

aspect, there has long been known to be an extant cholinergic receptor (post-synaptic nicotinic and M1 muscarinic

acetylcholine) hypofunction evident in AD ). In AD it has been demonstrated that augmented presynaptic

cholinergic activity results in the reflexive attenuation of synaptic acetylcholine release. This reduced release

therefore results in diminished level of activity at the post-synaptic muscarinic M1 GPCRs. Indicating the

importance of muscarinic signaling in AD pathophysiology, muscarinic M1 receptor signaling cascades can inhibit

β-amyloidogenic (Aβ) amyloid precursor protein (APP) processing, resulting in a decreased level of cytotoxic β-

amyloid accumulation . From genetic deletion mouse models (i.e., GRK5-KO) it has been shown that GRK5

functionality is associated with severe hippocampal dysfunction (loss of neurosynaptic proteins and axonal

swelling) as well as increased amyloidosis .

When combined with murine AD models (Tg2576) GRK5 deficiency was found to cause increased inflammatory

astrogliosis in both hippocampal and cortical brain areas . In addition to this effect, the GRK5 deficiency was

also linked with both increased soluble Aβ levels as well as increased insoluble Aβ plaque load . These findings

were proposed to be due to a GRK5-induced potentiation of presynaptic muscarinic M2 receptor activity that

resulted in a significant reduction of synaptic acetylcholine transmission levels . This GRK5-associated

alteration of synaptic receptor activity in murine models of AD has been shown to be linked to disruptions in sub-

cellular compartmentalization of GRK5. Hence,  were able to demonstrate that aged AD model mice possess a

highly specific plasma membrane deficiency of GRK5 . A paucity of pre-synaptic GRK5, with its concomitant

detrimental effect on M2-acetylcholine receptor-controlled acetylcholine release, has been subsequently linked to

an exacerbation of tau hyperphosphorylation and further neuronal dysfunction. Using chemical blockade of these

hyperactivated M2 receptors   were able to attenuate this tau hyperphosphorylation in a GSK3β-dependent

manner.

It is thus apparent that GRK5 may indeed hold the key to the connection between the current major theories of AD,

i.e., the amyloid and the cholinergic hypotheses. The cholinergic hypothesis suggests that cholinergic CNS

dysfunction is responsible for the cognitive decline  while the amyloid hypothesis proposes that Aβ is the AD-

causative factor . Interestingly, as we have previously outlined, Aβ is thought to be one of the

driving forces for alterations of membrane associated GRK5 in AD . GRK5 plasma membrane deficiencies can
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mediate presynaptic M2 acetylcholine autoreceptor hyperactivation that, in turn, causes post-synaptic cholinergic

hypoactivity through the functional attenuation of cholinergic neurotransmission. This disrupted cholinergic

transmission then serves to augment Aβ amyloid production leading to a “feed-forward” process of progressive

neurosynaptic dysfunction and amyloid toxicity. In this recursive process both amyloid deposition and cholinergic

dysfunction each can serve as a cause and/or consequence of each other, with the extant GRK5 dysfunction as

the pivotal mediator. Given the present interest in these hypotheses in AD pharmacotherapy, the importance of

GRK5 as a drug target in this system may increase significantly in the future.

As a prelude to our next section, it is intriguing to note that GRK5 can be further connected with AD through its

ability to phosphorylate α-synuclein (SNCA) , tubulin as well as the AD-associated tau protein . This

pathological effect has been proposed to occur through GRK5-mediated phosphorylation causing increased SNCA

polymerization and eventual aggregation – in a similar manner to that seen with Aβ in the context of AD .

3.2. Parkinson’s disease (PD)

Parkinson’s disease (PD) is one of the most commonly encountered neurodegenerative diseases at the present

time, just behind AD with respect to world prevalence. The pathological effects of PD impact the primary fine motor

systems of the body. PD is clinically typified by progressive deterioration of tremor, rigidity, bradykinesia/akinesia,

gait disturbance, and postural instability. The major defining neuropathological feature of PD has long been

considered to be the loss of neurons in the substantia nigra that provide dopaminergic innervation to the striatum,

the CNS region most heavily implicated in fine motor control. Since the molecular mechanism causing

dopaminergic neuron dysfunction are yet to be comprehensively defined, there are unfortunately no effective

current pharmacotherapeutic interventions capable of retarding, or reversing, the disease . One of the lesser

known aspects of PD is the fact that advancing age is arguably the strongest risk factor for its generation . In

this light it is unsurprising that PD is typically is presented after the age of 60.

With respect to the functional intersection between GRK5 and PD pathology, it has been demonstrated by multiple

research groups that GRK5 represents one of the major kinases that can phosphorylate SNCA. This classical

function of GRK5 results in the promotion of the oligomerization of PD (with actual co-localization of GRK5 and

SNCA), facilitating the creation of pathological Lewy bodies in the substantia nigra and locus coeruleus of PD

patients . The nuclear functionality of GRK5 is one of its defining functional features among GRK proteins –

GRK5 activity itself has also been shown to promote the nuclear translocation of SNCA and its associated factors

PLK2 and 3 (Polo-like kinase 2 and 3) . While the full ramifications of nuclear SNCA remain currently

cryptic, it has been proposed that this aspect of SNCA biology may be independent of the classically-pathological

SNCA aggregation modality. It is important to note, especially with respect to aging pathomechanisms, that

oxidative stress environments promote the enhanced nuclear localization of SNCA . Within the nuclear

domain SNCA has been shown to functionally antagonize histone acetylation, resulting in increased neurotoxicity

). Nuclear SNCA has also been found to be a transcriptional regulator capable of binding to PGC1-α

(Peroxisome proliferator activated receptor gamma coactivator 1-alpha) promoter regions, and in doing so,

potentially regulate mitochondrial gene transcription and thus neurometabolic ROS-associated activity . In
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addition to these cell signaling-based analyses, genetic association studies have proposed a haplotypic association

of GRK5 gene with the clinical presentation of sporadic PD. These pathological haplotypes associated with

functional GRK5 SNPs that can control multiple transcription factors (Yin Yang-1 (YY1) and cAMP response

element-binding protein (CREB-1)) that together are capable of potentiating SNCA transcription . Unfortunately,

and as is quite common with genetic association studies, subsequent studies have failed to reproduce some of

these propositions. Hence, studies employing GRK5 deletion in cells have failed to find a resultant attenuation of

SNCA phosphorylation . In addition, further studies have not observed a strong localization of GRK5 in Lewy

bodies  or a firm association of GRK5 SNPs with PD .
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