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Biofertilizers are a promising alternative to chemical fertilizers and gaining importance for attaining sustainable

agriculture.

biofertilizers  microorganisms  soil fertility  crop productivity  sustainable agriculture

chemical fertilizers

1. Introduction

To help meet the escalating demand for food arising from the continuous expansion of the world’s population,

different crop nourishment strategies are being explored by farmers. According to FAO’s estimates, the demand for

agricultural products will increase to 60% by 2030 . Enhancing the production while keeping the environment safe

is one of the major challenges in the 21st century . Fertilizers have been used extensively to increase crop

production from arable land. Increasing use of chemical fertilizers in agriculture may make a country self-sufficient

in food production, but chemicals have an adverse impact both on the environment and living organisms. In

addition, the chemical fertilizers are expensive, affect the soil, reduce its water-holding capacity and fertility, cause

imbalance in the soil nutrients, and result in unacceptable levels of water pollution . On the other hand,

biofertilizers are eco-friendly, cost-effective, non-toxic, and easy to apply; they help maintain soil structure and

biodiversity of the agricultural land. Thus, they serve as a good substitute for chemical fertilizers .

Biofertilizers, also called microbial inoculants, are organic products containing specific microorganisms, which are

derived from plant roots and root zones. They have been shown to improve the growth and yield of the plant by

10–40% . These bioinoculants colonize the rhizosphere and the interior of the plant, promoting plant growth when

applied to the seed, plant surface, or the soil . They not only improve soil fertility and crop productivity by adding

nutrients to the soil, but also protect the plant from pests and diseases. They have been shown to enhance the

growth of the root system, extend its life, degrade the harmful materials, increase the survival of seedlings, and

reduce the time to flowering . Another beneficial aspect is that after continuous use of biofertilizers for 3–4 years,

there is no need for their application, as parental inocula are sufficient for growth and multiplication .

There are 17 essential elements required for proper growth and development of the plant. Among them, nitrogen

(N), phosphorous (P), and potassium (K) are needed in relatively large quantities . Several microorganisms are

commonly used as biofertilizers including nitrogen-fixing soil bacteria and cyanobacteria, phosphate-solubilizing

bacteria, used along with the combination of molds and fungi . Similarly, phytohormone producing bacteria are
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also used in biofertilizer formulation. They provide the growth-promoting substances like indole acetic acid (IAA),

amino acids, and vitamins to the plant and improve the productivity and fertility of the soil while maintaining the

crop yield .

2. Types of Biofertilizers

Biofertilizers are grouped into different types on the basis of their functions and mode of action. The commonly

used biofertilizers are nitrogen fixer (N-fixer), potassium solubilizer (K-solubilizer), phosphorus solubilizer (P-

solubilizer), and plant growth promoting rhizobacteria (PGPR) . In one gram of fertile soil, up to 10  bacteria

can be present, with a live weight of 2000 kg/ha . Soil bacteria could be cocci (sphere, 0.5 µm), bacilli (rod, 0.5–

0.3 µm), or spiral shaped (1–100 µm). The presence of bacteria in the soil depends upon the physical and

chemical properties of the soil, organic matter, and phosphorus contents, as well as cultural activities. However,

nutrient fixation and plant growth enhancement by bacteria are key components for achieving sustainable

agriculture goals in the future. Microbes also facilitate various nutrient cycles in the ecosystem. Table 1 contains a

summary of the classification of the biofertilizers based on the type of microbe used and mode of action, with

suitable examples.

Table 1. Classification of biofertilizers, mechanism of action, and their examples.

[12]

[13] 10

[14]

Biofertilizers Mechanism Groups Examples References

Nitrogen
fixing

Increase soil nitrogen
content by fixing

atmospheric N and make
it available to the plants

Free-living

Azotobacter, Anabaena,
Clostridium, Aulosira Bejerinkia,
Nostoc, Klebsiella, Stigonema,
Desulfovibrio, Rhodospirillum,

and Rhodopseudomonas

Symbiotic
Rhizobium, Frankia, Anabaena

azollae, and Trichodesmium

Associative
symbiotic

Azospirillum spp.,
Herbaspirillum spp.,

Alcaligenes, Enterobacter,
Azoarcus spp. Acetobacter

diazotrophicus

Phosphorus
solubilizing

Solubilize the insoluble
forms of P in the soil into

soluble forms by secreting
organic acids and
lowering soil pH to

dissolve bound
phosphates

Bacteria

Bacillus circulans, B subtilis,
Pseudomonas striata,

Penicillium spp. B. polymyxa
Microccocus Agrobacterium,

Aereobacter and
Flavobacterium

Fungi
Penicillum spp., Aspergillus
awamori and Trichoderma
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2.1. Nitrogen Fixing Biofertilizers

Nitrogen is the most limiting nutritional factor for plant growth . The atmosphere contains about 80% of the

nitrogen in free state, but most of the plants cannot utilize atmospheric nitrogen. A specialized group of microbes

are required to fix this nitrogen and make it available to the plant. These microorganisms are known as biological

nitrogen fixers (BNFs). They transform the inert N  into plant-usable organic form . Nitrogen fixation can provide

300–400 kg N/ha/yr and increase the crop yield by 10–50%. In plants, up to 25% of total nitrogen comes from N-

fixation. The roots of plants release substances into the soil, which support colonization and nitrogen fixation by

bacteria in the rhizosphere of plants. They can efficiently substitute for chemical fertilizers to a varied extent, thus

reducing the chemical load from the environment. A rough approximation of such substitution is shown in Table 2.

They are grouped into free-living bacteria (Azotobacter and Azospirillium), blue-green algae, and symbionts, such

as Rhizobium, Frankia, and Azolla. The N -fixing bacteria associated with legumes include Rhizobium,

Mesorhizobium, Azorhizobium, Bradyrhizobium, Sinorhizobium, and Allorhizobium and those with non-legumes

include Achromobacter, Alcaligenes, Arthrobacter, Acetobacter, Azomonas, Beijerinckia, Clostridium, Bacillus,

Enterobacter, Erwinia, Desulfovibrio, Derxia, Corynebacterium, Campylobacter, Herbaspirillum, Klebsiella,

Lignobacter, Mycobacterium, Rhodospirillum, Rhodo-pseudomonas, Xanthobacter, Mycobacterium, and

Methylosinus . Although many genera are isolated from the rhizosphere, mainly members of Azospirillum and

Azotobacter genera have been widely tested to increase yield of legumes and cereals under field condition . The

main N -fixing bacteria are described below.

Biofertilizers Mechanism Groups Examples References

Phosphorus
mobilizing

Transfer phosphorus from
the soil to the root cortex.
These are broad spectrum

bio-fertilizers.

Mycorrhiza

Arbuscular mycorrhiza, Glomus
spp., Gigaspora spp.,

Acaulospora spp.,
Scutellospora spp., and

Sclerocystis spp.

Potassium
solubilizing

Solubilize potassium
(silicates) by producing

organic acids that
decompose silicates and

help in the removal of
metal ions and make it

available to plants.

Bacteria
Bacillus. mucilaginosus, B.

circulanscan, B. edaphicus, and
Arthrobacter spp.

Fungi Aspergillus niger.

Potassium
mobilizing

They mobilize the
inaccessible forms of
potassium in the soil.

Bacteria Bacillus spp.

Fungi Aspergillus niger.

Micronutrient

Oxidizing sulfur to sulfates
which are usable by

plants.

Sulfur
oxidizing

Thiobacillus spp.

Solubilize the zinc by
proton, chelated ligands,

acidification, and by
oxidoreductive systems.

Zinc
solubilizing

Mycorhiza Pseudomonas spp.,
and Bacillus spp.

Plant growth
Promoting

Produce hormones that
promote root growth,

improve nutrient
availability, and improve

crop yield

Plant growth
promoting

rhizobacteria

Pseudomonas spp.
Agrobacterium, Pseudomonas

fluorescens, Arthrobacter,
Erwinia, Bacillus, Rhizobium,
Enterobacter, Streptomyces,

and Xanthomonas
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Table 2. Substitution of nitrogen by biofertilizers. Modified: .

2.1.1. The Rhizobium

Rhizobium belongs to the bacterial family Rhizobiaceae and is the best example of symbiotic nitrogen fixation. It

can fix N  in legumes as well as in non-legume crops. Rhizobium has been shown to fix up to 300 kg N/ha/year in

different legume crops . The bacteria infect the legume root and form nodules, within which they reduce

molecular nitrogen to ammonia, which is utilized by the plant to produce proteins, vitamins, and other nitrogen-

containing compounds. Thus, these root nodules act as factories of ammonia production . Rhizobium species

improve the growth of non-legumes by inducing changes in root morphology and growth physiology. The

Rhizobium application increased crop growth by improving plant height, seed germination, leaf chlorophyll, and N

content . Seed inoculation of rice with different strains of Rhizobium at graded levels of N increased straw yield

by 4% to 19% and rice grain yield by 8% to 22% . Rhizobium, Bradyshzodium, Sinorhizobium, Azorhizobium,

and Mesorhizobium are collectively called rhizobia. They can act directly by fixing nitrogen or influencing plant

hormones or indirectly by decreasing the inhibitory effects of pathogens . Rhizobium is commonly used in

agronomic practices to ensure adequate nitrogen (approximately 80% of biologically fixed N comes from

symbiosis) and have potential to replace chemical N fertilizers . Rhizobium maintains the soil fertility along with

higher crop yields . Datta et al. isolated Rhizobium strains and concluded that growth and yield parameters were

significantly enhanced by Rhizobium application in comparison to the control .

2.1.2. Azotobacter

Azotobacter is a free-living, nitrogen-fixing diazotrophic bacterium; it plays an important role in the nitrogen cycle

because of its various metabolic functions . Azotobacter has the ability to produce vitamins like thiamine and

riboflavin . It belongs to the family Azotobacteriaceae and is used as a biofertilizer for all non-leguminous plants,

especially rice, cotton, vegetables, sugarcane, sweet potato, and sweet sorghum. Dutta and Singh (2002) reported

a significant increase in seed yield in rapeseed and mustard following Azotobacter inoculation. It fixes almost 30

kg/N/year; it is mainly commercialized for sugarcane crop, as it increases the cane yield by 25–50 tons/hectares

and sugar content by 10–15%. Azotobacter is present in both alkaline and acidic soils. A. chroococcum is the most

prevalent species found in the soil, but other species like A. vinelandii, A. insignis, A. beijerinckii, and A.

[27]

Biofertilizers Substitutes/Ha/Year

Rhizobium 50–100 kg N

Azolla 9.2–18.4 kg N

Azospirillum 27.6 kg N (maize)

Blue Green Algae 24.8–29.9 kg N

Frankia 89.7 kg N
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macrocytogenes are also found . Eklund et al. (2013) demonstrated that the presence of A. chroococcum in the

rhizosphere of cucumber and tomato was correlated with increased growth and germination of seedlings .

Another study showed inoculation with A. chroococcum caused a significantly increase in plant growth compared to

control . Azotobacter also produces antifungal compounds and antibiotics that inhibit the growth of several

pathogenic fungi in the root zone and help prevent seedling mortality . The major limiting factor for the

proliferation of Azotobacter is the presence of reduced amount of organic matter in the soils; consequently, the

rhizoplane lacks Azotobacter cells .

2.1.3. Azospirillum

This bacterium is also essential, as it fixes a considerable amount of nitrogen in the soil. It is associated with the

rhizospheric region and fixes up to 20–40 kg N/ha in non-leguminous plants, such as cereals, millets, oilseeds,

cotton, and sorghum . It mostly forms a symbiotic association with plants. Several studies have shown the

potential of Azospirillum for crop improvement . Azospirillum-inoculated wheat seedlings developed

good water status; fresh weight was higher from inoculated seeds than from non-inoculated seeds. Somers et al.

(2005) showed that A. brasilense could synthesize phenyl acetic acid (PAA), an auxin-like molecule with anti-

microbial activity. It is demonstrated that the co-inoculation of A. lipoferum and B. megaterium provided balanced

nitrogen and phosphorus nutrition to the plant and produced a higher yield than inoculation with only Azospirillum

.

2.1.4. Anabaena Azollae

It is a symbiotic bacterium and used to fix the atmospheric nitrogen, mostly in rice . It is always associated

with the free-floating fern known as Azolla. Azolla leaves contain 4–5% nitrogen (on dry weight basis) and 0.2–

0.4% (on wet weight basis), quickly decompose, and provide the nitrogen to the plant. The Azolla-Anabaena

system contributes 1.1 kg N/ha/day; one crop of Azolla provided 20–40 kg N/ha to the rice crop in about 20–25

days . Azolla is used as a biofertilizer in many countries, such as Vietnam, China, Thailand, and the Philippines

. Another benefit of using this biofertilizer is its metal tolerance ability; thus, can be applied to the heavy

metal-polluted areas .

2.1.5. Blue-Green Algae (Cyanobacteria)

Nitrogen-fixing cyanobacteria are the most widespread N  fixers on the earth. Cyanobacteria or blue green algae

are a diverse group of prokaryotes consisting of Nostoc, Anabaena, Oscillatoria, Aulosira, and Lyngbya . They

play an important role in nourishing the soil with nitrogen and supply vitamin B complex and growth-promoting

substances like auxins, indole acetic acid, and gibberellic acid, which accelerate plant growth. They fix 20–30

Kg/N/ha in submerged rice fields and increase crop yield by 10–15% when applied at 10 Kg/ha. Reportedly, N

availability to plants was increased by the application of cyanobacteria in agriculture, particularly in the rice fields

. Cyanobacteria have been shown to enhance seed germination, shoot and root growth, and yield of wheat

and rice. In rice fields, blue-green algae can fix 25–30 kg N/ha/season . In a study, the effect of the exudates of

the cyanobacterial strains were tested on the growth parameters of Sorghum durra and Helianthus annuus. Shoot
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length was increased to about 120–242% as compared to control with various other positive effects . Strains

showed potential for releasing bioactive compounds and enhanced the plant growth and yield. In another study,

rice inoculation with cyanobacteria isolated from rice field showed the positive effects simultaneously on rice plant

and soil properties . Application of cyanobacteria as biofertilizers is useful for economically weak farmers who

are unable to invest in costly chemical fertilizers. Cyanobacterial biofertilizers can be used for a variety of biomes

and environments (terrestrial, rain, or desert) .

2.2. Phosphate Solubilizing and Mobilizing Biofertilizers

Plant contains about 0.2% of phosphorus on a dry weight basis, and it is an essential nutrient for plant growth and

development. Compared to other macro nutrients, phosphorus is so far the least mobile nutrient available to plants

under most soil conditions. Microorganisms are needed to convert the insoluble forms of phosphate to the soluble

forms . Several bacteria and a few fungi species are involved in the phosphate solubilizing process . The

phosphate-solubilizing bacteria (PSB) convert the insoluble phosphate, such as HPO  and H PO , into the soluble

form by using different mechanisms, including the production of organic acids, chelation, and ion exchange

reactions. Among the microbial populations, phosphate-solubilizing bacteria account for 1–50%, whereas fungi

account for only 0.1–0.5% of phosphate-solubilizing activities . The PSB can release metabolites, such as

organic acids, having hydroxyl (gluconic) and carboxyl (ketogluconic) groups that chelate the cation bound to the

phosphate and convert it to the soluble form, which is utilized by the plants. The secreted acids also reduce the pH

of the soil and dissolve the bound phosphate to make it available to the plants . Along with the organic method,

microorganisms also use the proton-extrusion mechanism to solubilize the phosphate . The PSB provide the

phosphate as well as other trace elements, such as Fe and Zn, ultimately enhancing the plant growth. They also

synthesize the enzyme that kills the pathogens, thus protecting the plant from diseases. Strains from bacterial

genera Pseudomonas, Bacillus, Rhizobium, and Enterobacter, along with Penicillium and Aspergillus fungi, are

well-known phosphate solubilizers . The application of Pseudomonas fuorescens strain in acidic soils of

Cameroon significantly improved the shoot length, grain yield, plant dry weight, and seed phosphorus content in

maize . In a recent study, phosphorus solubilizer Aspergillus niger was evaluated for its efficiency as biofertilizer;

it significantly increased the plant height, fruit size, leaf length/width, and number of fruits per plant when compared

with untreated plants. However, plants co-inoculated with both phosphorus solubilizing (A. niger) and the N fixing

Azotobacter showed more improved performance than those treated with each biofertilizer alone .

Phosphate-mobilizing microbes can mobilize the immobile forms of phosphorous . They transfer and mobilize

the insoluble phosphate from soil layers to the root cortex. Arbuscular mycorrhiza is an example of phosphate-

mobilizing fungi, in which fungi penetrate the roots and increase the surface area of roots, stimulate metabolic

processes, and absorb the nutrients into the roots. Reportedly, phosphorus-solubilizing bacteria (PSB) sometimes

act as phosphate mobilizers . Under optimum condition, they have potential to solubilize/mobilize about 30–50

kg P O /ha, due to which crop yield could increase by 10–20% .

2.2.1. Mycorrhiza
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It is a symbiotic association between the host plant and a certain group of fungi. It is arguably the most important

symbiosis on earth . This association provides the essential nutrients to the plant, mostly phosphorous and

growth hormones, which promote plant growth. They also increase the surface area of roots to increase the

absorption of nutrients from the soil and provide resistance to plants against plant pathogens . The hyphae of

fungi absorb the insoluble phosphorus and convert it into the solubilized form, which is taken up by the plant and, in

return, the plant provides shelter and other nutrients to the fungi. These fungi are ubiquitous in geographical

distribution and are associated with all crops, except Brasicacea .

2.2.2. Endomycorrhiza or VAM Fungi

Vesicular arbuscular mycorrhiza (VAM) is the symbiotic association between certain phycomycetous fungi and

angiosperm roots. These symbiotic soil fungi colonize the roots of approximately 80% of plant families . They

enhance the transfer of nutrients from the soil into the root system via specialized structures known as vesicles and

arbuscules. This association provides many benefits to the plant. The fungal hyphae enhance the uptake of

phosphorous and other nutrients as well as increase the root and shoot length. They also help the plant to uptake a

large amount of water from the roots. VAM can potentially increase plant tolerance to various biotic and abiotic

stresses and could replace the fertilizer requirements of trees and reduce the needs of current levels of chemical

fertilizers . VAM fungi could contribute to more than twofold increased acquisition of the less mobile

nutrients like P, S, Ca, Mg, Zn, and Cu from the rhizosphere . Six genera of fungi have been shown to form

mycorrhizal associations: Glomus, Acaulospora, Gigaspora, Sclerocystis, Entrophospora, and Scutellospora .

Co-inoculation treatment of VAM fungi, Glomus fasciculatum with Bradyrhizobium sp. + Pseudomonas striata or

Penicillium variable, significantly increased the nutrient uptake and plant yield . In addition, VAM fungi enhance

the uptake of nutrients by secreting the enzymes and organic acids. An increased concentration of K was found in

mycorrhizal plants in comparison to non-mycorrhizal plants .

2.3. Potassium Solubilizing and Mobilizing Biofertilizers

Potassium (K) is the second most abundant and important plant nutrient after nitrogen and phosphorus. Although K

is an abundant element in the soil, only 1–2% is available to plants, whereas the rest is present as mineral K that

cannot be taken up by plants. Therefore, a continuous K replenishment of soil solution is required . It plays a

vital role in the growth and development of plants. If not supplied in adequate quantity, the plants will grow slowly,

have poorly developed roots, and produce small seeds and low yields . It has been reported that a wide

range of bacterial and fungal strains use various mechanisms, including the production of acids, chelation,

acidolysis, complexolysis, and exchange reactions to solubilize the insoluble K into soluble forms .

Examples of potassium-solubilizing biofertilizer include Bacillus spp. and Aspergillus niger. Arthrobacter spp.,

Cladosporium, and Sphingomonas aminobacter with varying potential for K solubilization. B. edaphicus and B.

mucilaginosus are known to improve solubilization as well as mobilization. B. mucilaginosus, when inoculated in

soil, improved the oil content and groundnut biomass by 35.4% and 25%, respectively, along with enhanced K and

P availability . Recently, a study has shown that a potassium-solubilizing strain Bacillus pseudomycoides

enhanced K uptake in tea plants in the mica waste-treated soil by increasing potassium availability . Another

strain Bacillus cereus significantly increased the plant height, shoot dry weight, and branches number by about
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15%, 26%, and 27%, respectively, compared to the control . Some fungi like Aspergillus spp., and Penicillium

spp. also have potential to solubilize and mobilize K from organic and inorganic sources . Thus, role of K

solubilizers is significant for ensuring the regular supply of K to crop plants. These also exert positive impact on the

availability of other essential nutrients to the soil, and thus play an important role in maintaining soil sustainability

.

2.4. Sulfur Oxidizing Biofertilizers

Sulfur as a micronutrient is also required by the plants. It has been reported that sulfur plays a key role in improving

certain biological and physical properties of the soil. Sulfur is famous for soil buffering from high pH values.

Previous studies have shown that sulfur also promotes the efficiency of nitrogenous and phosphorus fertilizers and

increases the efficiency of crops to uptake micronutrients . An example of sulfur-oxidizing microbe is Thiobacillus

spp.; Thiobacillus thioparous and T. thioxidans can oxidize sulfur to plant usable sulfates that help in nourishment

of plants . A recent study has shown that inoculation of Thiobacillus along with elemental sulfur increases the

oxidation of elemental sulfur, resulting in increased nutrients availability in soil and consequently increased plant

growth . Sulfur compounds, especially in reduced form, significantly pollute the environment. Sulfur oxidizing

bacteria also play significant roles in environmental protection by biological elimination of sulfur pollution .

2.5. Zinc Solubilizing Biofertilizers

Zinc is one of the essential micronutrients required at relatively small concentrations (5–100 mg/kg) in tissues for

the growth and reproduction of plants. Zinc deficiency is very common in soil that results from the increased

application of fertilizers in an imbalanced manner, intensive agriculture, and poor soil health. It is estimated that by

2025, zinc deficiency may increase from 42% to 63% if the contributing reasons are neglected. Zinc is involved in

the synthesis of growth hormones. Zinc deficiency in plants leads to retarded shoot growth, reduced membrane

integrity and reduced leaf size, chlorosis, and increased susceptibility to light, heat, and fungal infections and

affects grain yield, root development, pollen formation, and water uptake and transport . Zinc deficiency can

lead to yellowing of leaves and stunted growth in wheat. Consuming zinc-deficient wheat can lead to zinc

deficiency in humans as well . Zinc deficiency is considered the fifth most important human-related death in less

developed countries. Therefore, addressing Zn deficiency in agriculture is getting top priority among other minor

nutrients . Microbial inoculants have been identified to solubilize the complex form of zinc in soil .

Mycorrhiza, Saccharomyces spp., and several genera of rhizobacteria such as Pseudomonas spp. and Bacillus

spp. are reported to increase Zn availability in soil. These microbes solubilize the zinc by chelated ligands and

oxidoreductive systems . These bacteria also produce phytochromes, antibiotics, vitamins, and antifungal

substances, and help the plant in many aspects . In a study, rice plants inoculated with a suitable combination

of Zn solubilizing bacterial strains (Burkholderia spp. and Acinetobacter spp.) increased the growth attributes and

rice yield and were found more efficient in acquiring Zn from the soil as compared to non-inoculated plants .

Biofertilizers containing Zn solubilizing bacteria have been reported to boost up the maize production .

2.6. Plant Growth Promoting Rhizobacteria (PGPR)

[95]

[96]

[97]

[98]

[99][100]

[101]

[102]

[21][103]

[21]

[104][105][106] [107]

[21][108]

[109]

[110]

[111]



Microbes as Biofertilizers | Encyclopedia.pub

https://encyclopedia.pub/entry/7971 9/29

A group of free-living rhizosphere bacteria that colonize plant roots and exert a beneficial effect on plant growth are

referred to as PGPR . They act as biofertilizers by promoting growth and development of plants, facilitating

biotic and abiotic stress tolerance, and helping in the mineralization of the soil by decomposing organic matter.

Inoculation of PGPR imparts various beneficial effects to the plant. They increase the tolerance of plant to drought

, salinity , and biotic stress . They enhance the seed germination  and soil

fertility  and promote growth by producing phytohormones including Auxins, IAA, ethylene, gibberellin, etc.

. They can modulate plant secondary metabolites and bioremediation of heavy metals and pollutants

. PGPR includes member of several genera, e.g., Agrobacterium, Arthrobacter, Alcaligenes,

Azotobacter, Acinetobacter, Actinoplanes. Bacillus, Frankia, Pseudomonas, Rhizobium, Micrococcus

Streptomyces, Xanthomonas, Enterobacter, Cellulomonas, Serratia, Flavobacterium, Thiobacillus, etc. . The

detailed contribution of PGPR to plant growth promotion and their modes of action has been included in several

reviews .

3. The Potential and Suitability of Biofertilizers for Crops

Biofertilizers play an important role in improving soil fertility and enhancing crop yield . When applied to the soil,

they participate in nutrient cycling and improve the soil structure and crop productivity . The uniqueness of

microbes and their capabilities in environmental and cultural conditions have made them potential candidates in the

agriculture field for resolving food related issues . The use of potential biofertilizers will not merely play a key

role in efficiency and sustainability of soil, but also conserve the environment by reducing the adverse impact of

agricultural practices and improving the food quality as well . Biofertilizers solubilize the key nutrients and make

them available to the plants. They contribute to the development of root hairs and consequently improve water

uptake by plants . They produce phytohormones and improve the soil fertility, consequently improving the

growth and development of plants without detrimental side-effects . A list of beneficial traits that these microbes

impart to the plants can be seen in Figure 1. Researchers are continuously working on the development of

biofertilizers to increase their application in agricultural industry for sustainable ecosystem and holistic well-being.
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Figure 1. Potential role of microbes as biofertilizers in the growth and development of plant.

Different crops need different biofertilizers for better results. Table 3 is explaining the best biofertilizers for the

different crops. Later scientists observed that specific combination of biofertilizers gives better results as compared

to inoculation of single/individual fertilizer. For field-grown maize, inoculation with Azotobacter and Azospirillum

significantly increased the grain yield, and total dry weight was increased up to 115% . Similarly, it is reported

that inoculation of rice seedlings with Azospirillum spp. and Azotobacter spp. successfully substituted inorganic

nitrogen fertilizer and increased rice yield from 2–3 t·ha  to 3.9 to 6.4 t·ha  . Another research has tested the

impact of rice root inoculation on the yield under different nitrogen fertility levels. Surprisingly, the significant yield

was observed at the lowest level of inorganic N fertilization . Using phosphorus solubilizing bacteria as

biofertilizers could increase the sugarcane yield up to 50%, thus saving 50% of costly phosphate fertilizer .

Table 3. Biofertilizers for the specific crops.

[150]

−1 −1 [151]

[152]

[153]

Biofertilizer Function Crops References

Rhizobium
(symbiotic)

Fixes 200–300 kg N/ha/year

Pea, pulses legumes, cow pea, green
gram, black gram, groundnut, soyabean,

berseem, wheat, jowar, bajra, maize

Increases yield up to 10–
30%

Maintain soil fertility

Azotobacter Supplies 20–40 kg
N/ha/year

Mustard, sunflower, banana, sugarcane,
grapes, papaya, watermelon, tomato,

chilly, lady finger, coconut
Promote growth substances

such as vitamins, IAA,
gibberellic acids.

[27][154]

[5][155][156]
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Chickpea is one of the major pulse crops grown in many countries worldwide. Single and combined inoculation of

bacterial and fungal strains (Bacillus sp. RM−2 and Aspergillus niger S−36) significantly enhanced many growth

parameters of chickpea over the control. However, dual inoculation of bacterial and fungal species was found more

Biofertilizer Function Crops References

Increase yield up to 10–
15%

Maintain soil fertility

Azospirillum

Fixes 20–160 kg N/ha /year

Rice, sugarcane, millet, wheat, sorghum,
bajra

Increase water and mineral
uptake

Production of plant
hormones

Enhance root growth

Increase crop yield

Blue-green algae

Fixes 20–40 kg N/ha/year

RicePromote growth substances
such as vitamins, IAA,

Gibberelic acids

Azolla
Fixes 30–60 kg N/ha/year

Rice
Used as green manure

Arbuscular
mycorrhizal fungi

(symbiotic)

Increase root absorption
area for nutrient access

Soybean, wheat, and corn
Fixes phosphate

Increase crop yield

Pseudomonas

Production of siderophores
and plant hormones

Potato, reddish, sugar beat
Fixes phosphate

Increase crop yield

Bacillus spp. Solubilize the phosphate
and fix the nitrogen in soil

Many vegetables and fruits

Synthesis of growth
hormones

Production of antibiotics

[85][157]

[59]

[158]

[159]

[160]

[161][162]
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effective comparatively than their respective single inoculations . The findings of Mohammadi et al.  showed

that biofertilizers significantly enhanced the nutrient uptake of chickpea. The effects of soil fertility on chlorophyll,

nutrients, grain yield, and yield components of chickpea seed are shown briefly in Table 4. Combined application of

PSB and Trichoderma produced the highest leaf P content (0.33%) and grain P content (279 mg 100 g ). The

production of acids by Bacillus spp. under P-limited conditions may increase the solubility of phosphorus. The

same study also revealed that chickpeas inoculated with biofertilizer (PSB+ Trichoderma) possess significantly

increased grain protein content (15.06%). A meta-analysis study has confirmed that the combined application of N

fixers and P solubilizers significantly increases the yield as compared to single inoculation. This indicates the

synergies between both fertilizers instead of competition . Another study tested the inoculation of soil with two

cyanobacterial species (Nostoc entophytum and Oscillatoria angustissima) as biofertilizers for pea plants that

significantly enhanced the growth, germination percentage, and photosynthetic pigment fraction. However, the

most effective results were noted with inoculation of one species and a half dose of chemical fertilizer, which

allowed saving of 50% of chemical fertilizers . Another group also tested the efficiency of biofertilizers, and they

concluded that inoculation of the wheat plant with biofertilizers (Azotobacter, Yeast, and Azotobacter + Yeast)

resulted in significantly higher values of most of the growth and yield parameters. They noted that mixed inoculums

were found better than single inoculums. .

Table 4. The effect of soil fertility on chlorophyll, nutrients, grain yield, and yield components of chickpea seed.

Modified: Mohammadi et al. .

Mean values in each column with the same superscript(s) do not differ significantly (p = 0.05).Habibi et al. (2011) strongly suggested that using combined strains in biofertilizers plus a half dose of chemical or

organic fertilizers could significantly increase oil and grain yield in medicinal pumpkin . They showed that

Biofertilizer Function Crops References

Increase crop yield

[163] [164]

−1

[165]

[166]

[167]

[164]

Biofertilizers Chlorophyll
N P K

mg/100 gm

PSB 43.41 2269 273.5 1201.1 

Trichoderma 43.35 2295 266.2 1176.3 

PSB + fungi 44.12 2315 299.8 1232.1 

Control 43.22 2167 264.9 1199.8 

Biofertilizers Grain Yield (kg/ha) Pod Number Per Plant Fertile Pod Per Plant

PSB 1756.1 39.72 25.84 

Trichoderma 1866.2 40.79 27.41 

PSB + fungi 2560.3 57.66 35.07 

Control 1310.7 30.83 20.73 

b b b b

b b c c

a a a a

b c c b

c b c

b b b

b a a

d c d

[168]
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biofertilizers improved the efficiency of traditional chemical fertilizers, ultimately reducing the use of expensive

chemical fertilizers and reducing environmental pollution. Another study reported that the integration of biofertilizers

with chemical fertilizers produced maximum rice yield . They combined nitrogen, phosphorus, and potassium

chemical fertilizers with biofertilizers (Azospirillum, Azotobacter, and Azolla) and obtained the highest grain yield

and straw yield (3.57 and 4.32 t/ha, respectively) of rice. Then they grew peanut crop on the residual soil and found

the highest pod yield. This revealed that biofertilizers applied to one crop can have beneficial effects on the next

crop too.

The use of biofilm is also getting popular in biofertilizer technology. This technique was tested on wheat crops in

which a biofilm prepared from Anabaena torulosa was used as a matrix for Azotobacter, Pseudomonas, Serratia,

and Mesorhizobium, and it resulted in 40–50% increased nitrogen fixation . Biofertilizers have been shown to

enhance plant tolerance to environmental stresses. The study has shown that inoculation of plants with arbuscular

mycorrhiza fungi enhances the plant growth under salt stress . A study demonstrated that Psuedomonas spp.

exert a positive effect on the growth and germination of seeds under water stress. . Another study has shown

that the inoculation of mycorrhiza increased the photosynthetic efficiency of rice plant under saline and drought

conditions . Biofertilizers are also useful to protect the crops from the hazardous effects of heavy metals. A

study revealed that the use of biofertilizers was found effective in moderating cadmium toxicity in the soil for

sunflower and maize cultivation .

4. Biofertilizers: A Hero or a Villain in the Field

Biofertilizers are very helpful in getting a high yield of crops. They can convert the insoluble form of nutrients to the

soluble form, making the soil rich and suitable for the proper growth of plants. The biofertilizers come as an

alternative to chemical fertilizers. Chemical fertilizers release the chemicals that are damaging to our soil and

environment. Biofertilizers contain the natural component, which does not harm the plant. In fact, they protect the

plant from other diseases, fungal attack, and free pollutants . Biofertilizers also protect the plants from strict

conditions like drought, alkalinity, etc. Biofertilizers are of lower cost than the chemical fertilizers, but these

biofertilizers sometimes deceive the farmer. Regarding the specific type of biofertilizers used for specific crops, the

choice should be correct. The knowledge of biofertilizer composition is crucial to exploit the synergistic action of

various microbes. The biological and chemical interaction of biofertilizers with crop and soil is very complex. These

interactions are highly affected by moisture, pH, temperature, and other environmental variables, which ultimately

affect the efficacy of biofertilizers. That is why a good understanding of plant and microbe interrelationships is

mandatory . If the conditions are not right for the microbes to multiply and do their work, their populations are

likely to peter out. In other words, the user would have wasted time and money on a product that was not suitable

according to the soil conditions. Thus, great care should be taken in choosing the biofertilizers to achieve the

maximum results. There is a great need to overcome the biofertilizer production, market level, and resources

constraints that include improper handling of strains, lack of farmers awareness, limited investment for production

units, etc. Biofertilizers being living organisms required proper facilities for handling, transportation, and storage

.

[169]

[170]

[171]

[172]

[173]

[174]

[8]

[144]

[13]
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5. Potential of Biofertilizers in Agriculture Market

The market of biofertilizers is continuously expanding due to rising awareness of biofertilizers towards the growing

economy. The market of biofertilizers was valued about $440 million in 2012 globally and is expected to grow at the

rate of 10% per annum . Rhizobia is famous for being used as a biofertilizer, constituting 79% of world demand,

while phosphate mobilizing biofertilizers constitute about 15% . Manufacturing companies and regulatory

government authorities are the main stakeholders of the biofertilizers market. There are many companies in the

market ensuring safe production and distribution of biofertilizers. However, there are still some countries like in

Africa and Asia that are suffering from hunger and malnutrition but cannot access the latest agricultural

technologies. The strategy of using biofertilizers can play a significant role in this direction, as these fertilizers can

be easily produced by small companies and can be used in small agricultural lands. Azospirillum is an excellent

example of this in America; it can dramatically increase plant growth. They selected promising Azospirillum strains

by rigorous testing in the field and, after suitable formulations, were directed for production and commercialization.

Nowadays, more than 100 products of Azospirillum strains are commercially available, which aimed to enhance

crop yield mainly in wheat, maize, and soybean in South America . Similarly, 167 million hectares area and one

lakh hectares area are cultivated as organic farming using biofertilizers in China and India, respectively .

6. Limitations in the production of biofertilizers

Though biofertilizers have proven their worth in agriculture with promising results over the past 50 years, desired

success is still to be achieved. Several constraints limit the application of this technology at large scale. Some of

the possible reasons including competition of bioinoculant and natural flora of soil for niche, poor soil

characteristics, presence of environmental and soil pollutants and extreme climatic conditions, unavailability of

appropriate strain and suitable carrier material, unavailability of skilled and experienced staff in production unit,

unavailability of sufficient funds and equipment from government and private bodies, lack of storage and transport

facilities, lack of awareness among farmers, marketing constraints like unavailability of a suitable strain at a

suitable place at the right time, lack of regulations and standards for production, and lack of promotion network. A

list of possible constraints with recommendations that need to be taken care can be seen in Table 5. Practically, all

of these factors determine the potential success of biofertilizers.

Table 5. Constraints/limitations in the production and commercialization of biofertilizers.

[175]

[176]

[177]

[178]

Constraints/Limitations Recommendations

Technical constraints Unavailability of suitable carrier

material

Identification and selection of appropriate

economic carrier to maintain shelf life and

effectiveness of biofertilizers.
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7. Conclusion and Prospects

Biofertilizers are a good approach to increasing crop productivity. In recent years, the biofertilizers are used to

provide the essential nutrients to the plant and significantly increase its yield. These are eco-friendly, cost effective,

provides the natural environment to the plant, boost the defense system of the plant, and protect the plant from

drought, acidity, and other strict conditions. The advantages of biofertilizers exceed its usage from the other

harmful chemical fertilizers. In this review, the most important microorganisms used as biofertilizers are explained

along with their mechanism of action. It is also observed that the inoculation of two different types of biofertilizers

increases the yield of crops more significantly than the single biofertilizer or solo chemical fertilizer inoculation. The

increasing demand for biofertilizers reflects an eco-friendly and sustainable agriculture system in the future.
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