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Soil salinity is one of the major abiotic constraints in agricultural ecosystems worldwide. High salinity levels have

negative impacts on plant growth and yield, and affect soil physicochemical properties. Salinity also has adverse

effects on the distribution and abundance of soil microorganisms. Halotolerant plant growth-promoting

rhizobacteria (HT-PGPR) secrete secondary metabolites, including osmoprotectants, exopolysaccharides, and

volatile organic compounds. The importance of these compounds in promoting plant growth and reducing adverse

effects under salinity stress has been widely recognised. HT-PGPR are emerging as effective biological strategies

for mitigating the harmful effects of high salinity; improving plant growth, development, and yield; and remediating

degraded saline soils. 
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1. Introduction

Food insecurity is a growing problem globally, owing to population growth, changing climates, and declining

agricultural land, which threaten sustainable agriculture . By 2070, the world population is expected to rise from

8 billion to 10 billion people . This will require more farmland to meet the increasing food demand, but

environmental factors including rising temperatures, erratic rainfall patterns, drought and soil salinity already limit

land suitable for agricultural production . Soil salinization is a major contributor to the degradation of agricultural

land and reductions in crop productivity, with salinity affecting over 800 million hectares of land or 6% of the total

worldwide land area . Crop growth is impeded by salinity due to the toxicity of certain ions, nutrient imbalances,

and osmotic stress , and low levels of organic matter in the soil, all of which can amplify the unfavourable effects

of salinization . The replacement of the ions responsible for salinity, either chemically or through the addition of

organic materials has been effective in the amelioration of saline soils . The productivity of such saline soils can

therefore be increased through the adoption of new sustainable approaches, such as the use of inorganic or

organic soil amendments and salt-resistant crop varieties .

Based on their responses to saline conditions, plants can be separated into two categories, glycophytes and

halophytes, with the majority of plant species being glycophytes, and therefore relatively intolerant to salinity .

Halophytes, salt tolerant species, have evolved specialised strategies for survival in these conditions, such as root
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and shoot salt exclusion, ion compartmenting into various organs, and the synthesis of compatible solutes. The

metabolic capacity of plants to respond to salt stress can also be enhanced by microbial interactions . Research

has shown many instances where microorganism-based plant biotechnology has proven to be more effective than

traditional plant breeding or genetic modification techniques, and even soil amelioration approaches in alleviating

soil constraints . Microbes such as halotolerant plant growth-promoting rhizobacteria (HT-PGPR) can use a wide

range of metabolic and genetic strategies to assist plants in mitigating the effects of salt stress and other abiotic

stresses caused by harsh environmental conditions . HT-PGPR are able to produce a wide range of

secondary metabolites that aid in plant protection and assist in maintaining growth under saline environments, for

both the symbiotic plant and bacteria species . Most of these metabolites are only formed under abiotic stress

conditions and enable the plant to survive in extreme climatic conditions, by acting on vital survival mechanisms

including ion transport systems and uptake of osmoprotectants (Figure 1) . Associated organic compounds

have recently been shown to support plants in better adapting to saline conditions . 

Figure 1. Effects of salinity stress and associated tolerance mechanisms induced by halotolerant plant growth-

promoting rhizobacteria (HT-PGPR) in both plant roots and shoots.

2. HT-PGPR: Diversity and Their Effect on Crop Production

The use of HT-PGPR has recently emerged as a viable solution to issues associated with increasing soil salinity in

agricultural lands . These halophilic and halotolerant microorganisms are already adapted to thrive in salty

environments  and through symbiotic relationships with associated plant species, they can influence host plant

survival, root development, and growth (Figure 2) . HT-PGPR can not only recognise and react to signal

molecules secreted by plant roots, but also secrete a diverse range of signalling molecules that influence plant

behaviour. These microbes also synthesis beneficial molecules including siderophores, phytohormones, volatile
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organic compounds (VOCs), exopolysaccharides (EPS), and other metabolites, along with solubilising nutrients

such as phosphorus (P), zinc (Zn), and potassium (K) (Figure 2) . These metabolites can assist plants

through a wide range of biochemical, physiological, and molecular responses, including preserving ionic

homeostasis through Na /K  transporters, enhancing water capacity, and activating SOS (Salt-Overly Sensitive)

genes , together with acting as osmoprotectants, antioxidants, and compatible solutes. This three-tiered

interwoven action–cumulation association between HT-PGPR and plant salt stress responses includes the

existence of the bacteria itself in hyperosmotic conditions, the induction of salt-resistance in crops, and the

improvement of soil quality  (Figure 1). Crop salt stress has been found to be reduced by several HT-PGPR

species, including Azospirillum, Arhrobacter, Burkholderia, Alcaligenes, Bacillus, Enterobacter, Klebsiella,

Microbacterium, Streptomyces, Pseudomonas, Pantoea, and Rhizobium . These species may occur naturally

around crop species or can be isolated from native halophytic plants.

Figure 2. Effect of HT-PGPR on plant growth and salinity tolerance in glycophytic plants. The plate shown includes

potential HT-PGPR isolated from native halophytes and consists of rhizobacteria and endophytes. Beneficial

effects are shown in blue boxes, the underlying processes in orange boxes, and benefits plants in the last column.

Wheat inoculated with HT-PGPR Enterobacter cloacae, Pseudomonas putida, Pseudomonas fluorescens, and

Serratia ficaria, then cultivated in naturally saline fields (ECe = 15 dSm ), had increased germination rates,

percentage, and index by 51%, 43%, and 123%, respectively, in comparison to the nontreated controls, along with

increased yield . Another study found that the shoot and root fresh and dry biomass weights of Brassica juncea,

cultivated in saline conditions (ECe = 12 dSm ), significantly increased after inoculation with salt-tolerant

Pseudomonas azotoformans JMM15 and Pseudomonas argentinensis HMM57 strains . Additionally, an F-11
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halotolerant Staphylococcus jettensis F1 increased the dry biomass of Zea mays by a factor of three when plants

were grown under 200 mM saline stress . Pseudomonas putida performed best among strains tested under high

salinity (15 dSm ), increasing plant height by 52%, root length by 60%, grain output by 76%, 100-grain weight by

19%, and straw yield by 67%, in wheat compared to the uninoculated crop . Although it has been shown that

HT-PGPR may improve crop production (in salt-affected soil) and reduce salinity stress, there is still much to learn

about the interactions and processes that take place between plants and microorganisms under multidimensional

stresses like salinity.

3. HT-PGPR and Their Effects in Mitigating Salt Stress in
Crops

HT-PGPR provide plants with resistance to salt stress through several key processes. One such process is the

regulation of the salt overly sensitive (SOS) pathway, which is involved in salt influx/efflux across membranes,

through metabolites and associated gene expression patterns. It has been shown that the SOS1 gene is directly

regulated by metabolites such as EPS, VOCs, and suitable solutes (i.e., proline, glycine betaines, and trehalose)

, which also direct stress regulation in SOS genes , HKT1 transporter (high-affinity K) expression , and

other genes implicated in the reduction in salt stress, i.e., ethylene biosynthesis and antioxidant protein encoding

genes . Examples of the beneficial effects of HT-PGPR, along with how they help plants cope with saline

conditions in different plants, are reviewed and presented in Table 1. 

Table 1. Effects of inoculating plant species with various halotolerant plant growth-promoting rhizobacteria (HT-

PGPR) species. Table summarises genes involved, mechanisms to increase salt tolerance, and actual effects

observed in different plants.
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Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress

Effect
Observed References

Arabidopsis
thaliana L. Bacillus oryzicola

YC7007

RD22, KIN1,
RD29B, RD20,

RD22, and
ERD1

Stem and the root
of the seedlings
released stress-
related genes

Enhanced plant
tolerance to salt

stress

Pseudomonas
putida PS01

APX2 and
GLYI7

APX2 and GLYI7
genes were

downregulated

ABA signalling,
jasmonic acid

production
route, ROS
scavenging,
detoxification

Pseudomonas
knackmussii

MLR6

NHX1, HKT1,
SOS2, SOS3,
SAG13, and

PR1

Enhanced stomatal
conductance,

transpiration rate,
chlorophyll, and
carotenoid levels

Reduced
electrolyte

leakage and
priming ROS
accumulation
increasing cell
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Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress

Effect
Observed References

membrane
stability

Bacillus
amyloliquefaciens

SQR9

NHX1 and
NHX7

Involved in reducing
GSH biosynthesis

Reduced ion
toxicity by

sequestering
Na  into

vacuoles and
releasing Na
from the cell

Burkholderia
phytofirmans

PsJN

Upregulation of
RD29A and
GLYI7, and

downregulation
of LOX2

Enhancement of
proline and

transcription of
genes related to

abscisic acid
signalling and
downregulated

gene Lipoxygenase
2

Abscisic acid
signalling, ROS

reduction,
detoxifying,
jasmonate

synthesis, and
ion transport

Paenibacillus
yonginensis

DCY84

AtRSA1,
AtVQ9 and
AtWRKY8

Upregulated salt-
stress genes

Promoted more
resistance to

salinity, drought,
and aluminium

stresses

 

Enterobacter sp.
EJ01

DREB2b,
RD29A,
RD29B,
RAB18,
P5CS1,

P5CS2, MPK3,
and MPK6

Upregulated salt-
stress genes

Promoted more
resistance to
salinity and

enhanced plant
growth

Bacillus subtilis
GB03

HKT1

Down- and
upregulates HKT1

in roots and shoots,
respectively

Decreased total
plant Na

accumulation

Bacopa
monneri L.

Dietzia
natronolimnaea

STR1

SOS1, SOS4,
TaST, TaNHX1,

TaHAK, and
TaHKT1

Reduction in ABA-
signalling,

upregulated
TaABARE and

TaOPR1

Abscisic acid
signalling, ROS

scavenging,
antioxidant

enzyme activity,
enhanced ion

transporter
expression,
high K /Na

ratio
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Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress

Effect
Observed References

Bacillus pumilus
STR2,

Exiguobacterium
oxidotolerens

STR36

-

Mixture of plant
growth-promoting

traits under primary
and secondary
saline condition

Produced
higher yield,

high proline/lipid
content

peroxidation

Cicer
arietinum L.

Planococcus
rifietoensis (RT4)
and Halomonas
variabilis (HT1)

-
Biofilm and

exopolysaccharides
production

Improved crop
growth, soil
aggregation,

and soil fertility

Glycine max
L.

Arthrobacter
woluwensis AK1

-

Reduced
endogenous ABA

and controlled
antioxidant activity

Mitigated
salinity stress
and increased
plant growth

Microbacterium
oxydans,

Arthrobacter
woluwensis,
Arthrobacter
aurescens,

Bacillus
aryabhattai, and

Bacillus
megaterium

-

Increased
production of IAA,
GA, siderophores,

and phosphate
solubilisation

Increased
antioxidant

enzymes and K
absorption;

reduced Na  in
plant tissue;

phytohormone

Pseudomonas
simiae AU

P5CS, PPO
and HKT1

Downregulated
HKT1, LOX, PPO,
and P5CS genes

Increased
chlorophyll,
phosphate

solubilisation,
IAA, and

siderophores;
decreased root
surface in saline

Pseudomonas sp.
strain AK-1

HTK1

Improve K /Na
ratio and

Exopolysaccharide
production binds
free Na  from soil

Increased
shoot/root
length and
decreased

Na /K  ratio

Pseudomonas
simiae AU

VSP2

Increase vegetative
storage protein
(VSP), gamma-

glutamyl hydrolase
(GGH), and

RuBisCo proteins

Reduced Na,
increased K and

P in soybean
seedling roots,

high proline and
chlorophyll

content
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Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress

Effect
Observed References

Helianthus
annuus L.

Pseudomonas
libanensis TR1

-

ACC-deaminase
and

exopolysaccharide
production

Ni and Na
accumulation

potential
increased along

with plant
growth.

Pseudomonas
spp.

-
Upregulating of
ACC deaminase

Improved P and
K contents, and
K /Na  ratio in

shoot

Hordeum
vulgare L.

Bacillus
mojavensis, B.
pumilus and

Pseudomonas
fluorescens

S1 and S3
ACC deaminase,
IAA, and proline

production

Reduced plant
Na

concentration,
stimulated root

growth,
improved water

and nutrient
absorption

B. aryabhattai
MS3

BZ8, SOS1,
GIG, and

NHX1

Increased salt
stress resistance
and accumulation

Adaptation of
plant under

saline condition

Bacillus
amyloliquefaciens

SN13
DHN

Upregulated salt
stress-responsive
genes and protein-

related genes

Lipid
peroxidation

and electrolyte
leakage
reduced;

increased rice
biomass, water
content, proline,

and total
soluble sugar

Bacillus
megaterium ST2-1

- IAA production

Stimulated the
growth of rice
roots and dry

biomass

Pseudomonas
pseudoalcaligenes

ST1, Bacillus
pumilus ST2

EU440977 and
FJ840535

Accumulation of
proline decrease
with inoculation,

antioxidative activity

Enhanced plant
growth by ROS
scavenging and

higher
accumulation of
osmoprotectant

Puccinellia
tenuiflora L.

Bacillus subtilis
(GB03)

- Upregulated
PtHKT1;5 and

Na homeostasis
modulation,
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Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress

Effect
Observed References

PtSOS1 genes,
downregulated

PtHKT2;1

exclusive K+
absorption

Solanum
lycopersicum

L.

Leclercia
adecarboxylata

MO1
-

ACC deaminase
and IAA production

Increased
soluble sugars:

organic
glucose,
sucrose,

fructose, malic,
amino acid, and

proline

Sphingobacterium
sp. BHU-AV3

-
Reduction in ROS
concentration in

plant

Enhanced
antioxidant

activities and
energy

metabolism

Enterobacter sp.
EJ01

DREB2b,
RD29A,

RD29B, and
RAB18

Downregulated
P5CS1 and P5CS2,

and upregulated
MPK3 and MPK6

Biosynthesis,
defence
pathway

modulation,
salt response

Pseudomonas
putida UW4

Toc GTPase

Toc GTPase genes
were upregulated
and reduction in
ACC deaminase

Increased shoot
length and
chlorophyll

concentration

Trifolium
repens L.

Bacillus subtilis
(GB03)

-
Reduced shoot and
root Na , improving

K /Na  ratio

Decreased Na ,
increased

chlorophyll, leaf
osmotic

potential, cell
membrane

integrity

Triticum
aestivum L. Pseudomonas

aeruginosa GI-1,
and Burkholderia

gladioli GI-6

-

P solubilisation,
catalase activity,
IAA production, N
assimilation, and

siderophores
production

Encouraged
growth and
yield and

improve soil
fertility

Arthrobacter
nitroguajacolicus

- Upregulated 152
genes whereas 5

genes were
downregulated

Amplified ACC,
IAA,

siderophore,
and phosphate
solubility. ROS
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