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1. Introduction

Breast cancer (BC) is the most frequently diagnosed tumor and the leading cause of cancer deaths in women worldwide

. The year 2020 saw an estimated 2.3 million new cases of BC (11.7% of all cancer cases), with 685,000 deaths

worldwide ; however, advances in population screening and early treatment (among other factors) have supported a

steady decrease in BC mortality . Unfortunately, figures from the American Cancer Society place the five-year survival

rate after diagnosis of metastatic BC at 27%, a low value considering the 99% five-year survival rate for localized disease

. Therefore, early BC detection represents a crucial step in reducing disease mortality . BC screening currently relies

on mammography, a non-invasive strategy primarily performed in women between 50 to 69 years of age that has

prompted a reduction in BC mortality . Nevertheless, this approach suffers from several limitations, including false-

positive reporting and overdiagnosis . Ultrasound, magnetic resonance imaging, and computed tomography can

overcome such problems thanks to their high sensitivity; however, the elevated costs associated with these tools make

this approach less accessible. Thus, we still lack alternative methods for the accurate, non-invasive, and low-cost

diagnosis of early-stage BC.

BC is a highly heterogeneous disease from a molecular perspective and is primarily characterized by the overexpression

of the HER2 growth factor, estrogen receptor (ER), and progesterone receptor (PR) and mutations in the BRCA1/2 genes,

with the latter associated with a higher risk of developing BC . Former classifications of BC tumors employed tumor

size, histological grade, immunohistochemistry of ER/PR status, and the amplification of HER2. The addition of gene

expression profiling to these molecular features has resulted in the classification currently used by the European Society

for Medical Oncology as a clinical guideline for BC diagnosis, follow-up, and treatment . This system classifies BC

tumors into four major intrinsic molecular subgroups: luminal A (ER+ and/or PR+, HER2-, low Ki67), luminal B (ER+

and/or PR+, HER2+ or HER2- with high Ki67), basal-like (ER/PR-, HER2-), and HER2-enriched (ER/PR-, HER2+).

Luminal A tumors (the low-grade group) are the most common BC subtype, comprising over 60–70% of all cases.

Meanwhile, basal-like tumors, with an ~80% overlap with highly proliferative triple-negative breast cancer (TNBC) ,

exhibit aggressive behavior and suffer from poor prognosis . Although ER+ tumors present lower recurrence rates

within the first five years, over 50% of tumor recurrences occur after this time and cause most BC-related deaths .

Each BC subtype has a characteristic biological profile, prognosis, and treatment strategy , and several

scoring systems aid prognosis and treatment decision-making processes. Unfortunately, systems based on different

molecular features related to tumor biology, including histological type, grade, lymphovascular invasion, and marker

status, do not accurately reflect BC subtype heterogeneity or specific patient subtypes . Thus, enormous efforts have

been devoted to classifying heterogeneous BC subtypes into molecular subtypes that guide treatment decisions 

.

2. Multi-Omics Studies of BC Prognosis

Metabolic deregulation can impact various molecular processes (e.g., cell proliferation, apoptosis, migration, and invasion)

that contribute to tumor progression  and influence cancer patient survival (Figure 2) .
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Figure 2. Schematic representation of the impact of metabolic changes on essential molecular processes associated with

tumor progression and patient survival. Created with BioRender.com.

Several studies have reported associations between metabolic alterations and BC patient survival based on single omic

analysis, including genomic , transcriptomic , proteomic , and metabolomic  studies in tissue 

and serum  samples. However, additional studies based on the integration of data from multi-omics analyses

have provided more accurate information regarding the molecules involved in metabolic rewiring associated with BC

progression. Of the seven studies following a multi-omics approach to identify metabolic alterations associated with BC

prognosis (Table 3), most relied on the analysis of tissue sample analysis and the integration of transcriptomic and

metabolomic datasets. Overall, BC patient survival associated with the altered expression of enzymes involved in

nucleotide, lipid, and amino acid metabolism.

Table 3. Multi-omics studies focused on identifying metabolic alterations associated with BC prognosis.

Study Sample Omics
Data Major Findings *

Putluri et al. Cell lines +
Tissue M+T ↑ RRM2 (pyrimidine metabolism)

Luo et al. Blood + Tissue M+T ↑ RRM2 (pyrimidine metabolism) and ↓ AMPD1 (de novo purine
metabolism)

Iqbal et al. Tissue M+T ↑ CBX2 and ↓ CBX7 (glycolysis)

Camarda et al. Cell lines +
Tissue M+T ↓ ACC2 (FAO)

Kang et al. Cell lines L+T ↓ ELOVL2 (lipid synthesis)

Terunuma et al. Tissue M+T+P+E ↑ 2HG, SAM and SAH
↑ IDH2 (glutamine metabolism)

Budczies et al. Tissue M+T ↓ ABAT, ↑ β-alanine
(β-alanine metabolism)

ABAT: 4-aminobutyrate aminotransferase, ACC2: acetyl-CoA carboxylase 2, AMPD1: adenosine monophosphate

deaminase 1, CBX2: chromobox 2, CBX7: chromobox 7, E: epigenomics, ELOVL2: ELOVL fatty acid elongase 2, FAO:

fatty acid oxidation, L: lipidomics, IDH2: isocitrate dehydrogenase (NADP(+)) 2, M: metabolomics, P: proteomics, RRM2:

ribonucleotide reductase regulatory subunit M2, SAH: S-adenosylhomocysteine, SAM: S-adenosyl- methionine, T:

transcriptomics, 2HG: 2-hydroxyglutarate. * Direction of metabolic alterations directly correlated with worse BC patients’

outcomes.

Previous studies have demonstrated that nucleotide biosynthesis plays a vital role in BC , and could

represent a promising therapeutic strategy . Notably, two of the multi-omics studies included in Table 3
established an inverse correlation between the expression levels of genes involved in de novo purine and pyrimidine

syntheses and BC patient survival . Putluri et al. performed an in silico analysis to evaluate the association between

omics-based enrichment and patient survival, using ten independent gene expression data sets to select clinically relevant

prognostic biomarkers . Kaplan–Meyer curves revealed an association between increased expression of pyrimidine

metabolism-related genes and shorter metastasis-free survival across all BC and within the subset of ER + tumors.

RRM2, a critical gene in pyrimidine metabolism displaying elevated expression in aggressive BC , has prognostic

relevance in BC  when combined with proliferation markers . RRM2 expression distinguished good vs. poor

survival within the entire BC patient group in this multi-omics study, including a significant proportion of luminal A subtype

typically considered to have better survival outcomes . Luo and colleagues integrated metabolomic and transcriptomic

analysis to confirm the association between alterations in nucleotide metabolism and BC patient survival in a TCGA cohort

of patients . The authors observed a significant correlation between poor survival of BC patients and changes to the

expression of RRM2 and adenosine monophosphate deaminase 1 (AMPD1), a key enzyme in de novo purine synthesis.
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These enzymes have been postulated as promising therapeutic targets in different tumor types, including BC 

.

Iqbal et al. established antagonistic roles of CBX2 and CBX7 in metabolic reprogramming of BC and an association with

BC patient survival . The authors described a significant correlation between higher CBX2 and lower CBX7 mRNA

levels and worse BC prognosis, which agrees with previous findings that correlated the CBX2 or CBX7 expression with

overall patient survival .

As for the alterations in lipid metabolism, Camarda and colleagues followed a targeted metabolomics approach and

reported the dramatic upregulation of FAO intermediates in a MYC-driven model of TNBC . To characterize a potential

association between FAO gene expression and prognosis in TNBC, the authors performed a univariate analysis of 336

fatty acid metabolism genes on a patient cohort with long-term distant recurrence-free survival data. The analysis

revealed that decreased ACACB (acetyl-CoA carboxylase 2, ACC2) expression levels associated with worse prognoses in

all BC and TNBC patients. Subsequent studies also described significant associations between increased levels of ACC2

and better BC prognosis . Kang et al. conducted a multi-layered lipidomics and transcriptomics analysis to

describe the rewiring of the BC lipidome during malignant transformation . Analyses in a spheroid-induced epithelial-

mesenchymal transition (EMT) model demonstrated a dramatic reduction in the ratio of C22:6n3 (docosahexaenoic acid,

DHA) to C22:5n3 in spheroid cells, similarly to the down-regulation of ELOVL2, a process associated with the induction of

metastatic characteristics in BC cells. The authors examined the relationship between ELOVL2 expression and metastatic

relapse-free in a BC cohort with a follow-up of ten years, resulting in the discovery of an association between lower

ELOVL2 expression levels and shorter metastasis-free survival and higher tumor grade . A recent study investigating

the molecular mechanisms of tamoxifen resistance in BC confirmed these findings and described lower ELOVL2
expression in tamoxifen-resistant models and ELOVL2 downregulation in patients with tamoxifen resistance .

Additional studies have revealed a correlation between alterations in the levels of genes and metabolites involved in

amino acid metabolism and BC prognosis. Terunuma and coworkers identified a subset of BC tumors accumulating high

levels of 2-hydroxyglutarate (2HG). Further analyses revealed the presence of a subgroup of BC patients with significantly

decreased survival characterized by an exceptionally high accumulation of 2HG, reduced DNA methylation at the

isocitrate dehydrogenase (IDH2) locus, increased IDH2 expression, and increased levels of S-adenosyl- methionine

(SAM) and S-adenosylhomocysteine (SAH) . Previous studies reported an accumulation of the oncometabolite 2HG in

different tumor types, including BC , glioma , and leukemia . In another study, concerning amino acid metabolism,

Budczies et al. described an association between alterations in the metabolism of β-alanine and shorter recurrence-free

survival of BC patients . Specifically, the authors demonstrated that lower expression levels of 4-aminobutyrate

aminotransferase (ABAT), which negatively correlated with the concentration of β-alanine, indicated worse prognoses in

BC patients. A similar study reported decreased ABAT expression in more aggressive BC subtypes, which correlated with

an increased risk of metastasis and shorter overall, relapse-free, and distant metastasis-free survival . Finally, Jansen

et al. correlated ABAT downregulation with poor progression-free and metastasis-free survival in tamoxifen-treated

patients .

3. Multi-Omics Studies and Novel BC Treatment Strategies

Omics-based technologies have also been used to identify novel therapeutic targets and monitor biological alterations

related to BC metabolism following treatment . The majority of studies relied on the application

of metabolomics-based approaches in BC tissue  and serum  samples, although groups have evaluated

transcriptomic  and proteomic  profiles in tissue samples. Various studies have described how the combination of

omics approaches could characterize specific targets and foster the development of novel therapeutic strategies for

specific subgroups of BC patients . In particular, multi-omics studies have focused on identifying and validating

metabolic enzymes as promising therapeutic strategies for the treatment of different BC tumors (Table 4). Figure 3
illustrates those metabolic-related genes proposed as potential therapeutic targets for treating BC patients in these

studies. Overall, these findings suggest the therapeutic potential of inhibiting specific metabolic enzymes associated with

glycolysis or involved in nucleotide, amino acid, and lipid metabolism in BC patients.
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Figure 3. Overview of metabolic-related therapeutic targets for the treatment of BC patients identified from multi-omics-

based studies. α-KG: alpha-ketoglutarate, ACACA: acetyl-CoA carboxylase alpha, ADHFE1: alcohol dehydrogenase iron

containing 1, CBX2: chromobox 2, CBX7: chromobox 7, CPT1: carnitine palmitoyltransferase 1A, CPT2: carnitine

palmitoyltransferase 2, ECT: electron transport chain, ELOVL1: ELOVL fatty acid elongase 1, ELOVL2: ELOVL fatty acid

elongase 2, FASN: fatty acid synthase, GLUT1: glucose transporter 1, HK: hexokinase, INSIG1: insulin-induced gene 1,

LDH: lactate dehydrogenase, OXPHOS: oxidative phosphorylation, PDC: pyruvate dehydrogenase kinase, RRM2:

ribonucleotide reductase regulatory subunit M2, SCAP: SREBF chaperone, SCD: stearoyl-CoA desaturase, TCA:

tricarboxylic acid, THRSP: thyroid hormone-responsive. Created with BioRender.com.

Table 4. Multi-omics studies focused on developing new therapeutic strategies for the treatment of BC.

Study Omics Data BC Subtype Potential Targets

Iqbal et al. M+T TNBC and luminal-like CBX2 and CBX7

Gong et al. M+T TNBC FASN and LDH

Mahendralingam et al. P+T Basal- and luminal-like GLUT1, HK, LDH, and PDC

Putluri et al. M+T Basal- and luminal-like RRM2

Terunuma et al. M+T+P+E TNBC and basal-like ADHFE1

Hilvo et al. L+T TNBC, luminal- and
basal-like ACACA, ELOVL1, FASN, INSIG1, SCAP, SCD and THRSP

Kang et al. L+T Luminal-like ELOVL2

Camarda et al. M+T TNBC and HER2 + CPT1 and CPT2

ACACA: acetyl-CoA carboxylase alpha, ADHFE1: alcohol dehydrogenase iron containing 1, CBX2: chromobox 2, CBX7:

chromobox 7, CPT1: carnitine palmitoyltransferase 1A, CPT2: carnitine palmitoyltransferase 2, E: epigenomics, ELOVL1:

ELOVL fatty acid elongase 1, ELOVL2: ELOVL fatty acid elongase 2, FASN: fatty acid synthase, GLUT1: glucose

transporter 1, HK: hexokinase, IDH2: isocitrate dehydrogenase (NADP(+)) 2, INSIG1: insulin-induced gene 1, L:

lipidomics, LDH: lactate dehydrogenase, M: metabolomics, P: proteomics, PDC: pyruvate dehydrogenase kinase, RRM2:

ribonucleotide reductase regulatory subunit M2, SCAP: SREBF chaperone, SCD: stearoyl-CoA desaturase, T:

transcriptomics, TNBC: triple negative breast cancer, THRSP: thyroid hormone-responsive.

Iqbal and coworkers demonstrated that silencing CBX2 and CBX7 exhibited inverse effects on glycolysis, ATP production,

viability, and proliferation [59]. CBX7  overexpression provided comparable results to CBX2 knockdown, which included

decreased biomass production and reduced cell viability and proliferation. These in vitro results agreed with the findings of

the transcripto-metabolomic analyses performed on BC patients and validated the roles of CBX2 and CBX7 in metabolic

reprogramming of BC, highlighting the potential of these targets for the development of therapeutic strategies in BC. Of

note, additional studies have provided similar results for CBX2 and CBX7 in BC , pancreatic adenocarcinoma 

and metastatic prostate cancer . Gong and coworkers evaluated the sensitivity of different BC metabolic phenotypes to

metabolic inhibitors targeting glycolysis or de novo fatty acid synthesis . The glycolytic BC phenotype displayed greater

sensitivity to glycolytic inhibitors (oxamate, lactate dehydrogenase (LDH) inhibitors, and 2-deoxy-D-glucose), while

inhibitors of lipid synthesis (cerulin and FASN inhibitor) exhibited higher efficacy against the lipogenic phenotype.

Significantly, in vivo LDH inhibition enhanced tumor response to anti-PD-1 immunotherapy in the BC glycolytic phenotype.

[42]

[90]

[91]

[40]

[45]

[92]

[44]

[43]

[66][93][94] [64]

[95]

[90]



Previous studies have shown that LDH inhibition can suppress glycolysis  and cell proliferation  in BC cell lines.

Differences in sensitivity to pharmacological inhibitors targeting glycolysis or electron transport chain (ECT) subunits were

evaluated in different metabolic MECs phenotypes by Mahendralingam and colleagues . In this study, the glycolytic

phenotype displayed greater sensitivity to inhibitors targeting glucose transporter 1 (GLUT1), hexokinase (HK), LDH, and

pyruvate dehydrogenase kinase (PDC), which agrees with results reported by Gong et al. . Furthermore, studies have

demonstrated that HK inhibition prevents BC growth .

The metabolic enzyme RRM2 has also been proposed as a potential therapeutic target for the treatment of BC. Putluri et

al. observed that inhibiting RRM2 in BC cells significantly decreased proliferation and the expression of cell cycle genes

and sensitized cells to tamoxifen treatment . In agreement with the potential relevance of RRM2, additional studies

have reported a reduction in proliferation  and tamoxifen resistance  in BC cell lines following RRM2 inhibition.

Furthermore, associations between RRM2 overexpression and deterioration in BC survival have been widely reported,

strongly suggesting a role as a targeted therapy for BC .

A multi-omics-based study by Terunuma et al. identified alterations associated with glutamine metabolism in a subset of

BC tumors . The authors described a subset of BC tumors with high 2HG levels and a distinct DNA methylation pattern

associated with worse prognoses. Overall, studies have underscored the critical role of epigenetic-metabolomic interplay

in promoting tumorigenesis ; in particular, high 2-HG levels induce epigenetic reprogramming associated with

progression in different tumors . Interestingly, the silencing of IDH2 and alcohol dehydrogenase iron containing 1

(ADHFE1), two enzymes implicated in the mitochondria-associated α-ketoglutarate–dependent production of 2HG ,

prompted a marked reduction of endogenous 2HG in BC cells. Furthermore, ADHFE1 loss resulted in a moderate but

significant inhibition of cell cycle kinetics and reduced migration and invasion, suggesting an oncogenic role for ADHFE1
in BC. In agreement, several studies have associated high ADHFE1 expression levels with increased synthesis of 2HG

and worse patient prognosis in BC .

In the context of a multi-omics study focused on lipid metabolism, Hilvo et al. conducted gene silencing experiments on

seven enzymes involved in phospholipid remodeling and de novo lipid synthesis . The results established that the

individual inhibition of multiple lipid metabolism-regulating genes reduced the growth and viability of BC cell lines, which

agrees with studies reporting reduced cell migration, invasion, and tumor proliferation in BC  and other tumor

types  following the inhibition of specific lipid metabolism-related enzymes. Interestingly, a more recent study

described FASN, another enzyme involved in de novo lipid metabolism, as a promising therapeutic target for BC treatment

.

The results of a multi-omics-based study conducted by Kang et al. revealed lipid composition alterations during the EMT

in BC . The inhibition of ELOVL2 increased malignant potential, higher migration rate, and elevated colony formation.

Mechanistically, downregulation of ELOVL2 increased sterol regulatory element-binding transcription factor 1 (SREBP1)

expression in BC cells and activated lipogenesis, a process associated with the promotion of malignant BC phenotypes.

SREBP1 is a crucial regulator of fatty acid metabolism and plays a pivotal role in the transcriptional regulation of different

lipogenic genes mediating lipid synthesis . SREBP1 overexpression has been observed in different tumor types,

including BC , and supports the malignant BC phenotype . Finally, Camarda et al. suggested the inhibition

of FAO as a novel therapeutic target in a MYC-driven model of TNBC . Based on the characterization of the effects of

small-molecule inhibition and knock-down of carnitine palmitoyltransferase 1A (CPT1) and carnitine palmitoyltransferase 2

(CPT2) in BC cell lines, the authors demonstrated that FAO plays an essential role in this BC model. Furthermore, in vivo

experiments demonstrated that treatment with etomoxir, a CPT1 inhibitor, significantly attenuated tumor growth in various

BC models. Additional studies have also demonstrated that individual knockdown of both CPT enzymes reduces FAO

metabolism and cell proliferation in different tumors . In addition, more recent studies suggested CPT1 as a

potential BC tumor target .
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