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Cyanobacteria blooms are a global aquatic environment problem. Due to global warming and water eutrophication, the

surface cyanobacteria accumulate in a certain area to form cyanobacteria blooms driven by wind. Cyanobacteria blooms

change the physical and chemical properties of water and cause pollution. Moreover, cyanobacteria release organic

matter, N (nitrogen) and P (phosphorus) into the water during their apoptosis, accelerating the eutrophication of the water,

threatening aquatic flora and fauna, and affecting the community structure and abundance of microorganisms in the water.

Simultaneously, toxins and carcinogens released from cyanobacteria can be enriched through the food chain/web,

endangering human health. 
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1. Introduction

Cyanobacteria are widely distributed in marine and freshwater, and have more robust adaptability than most eukaryotes

. They have the ability to grow and reproduce in extreme environments (ice and snow, hot springs, alkaline soda lakes,

brine pools, deserts, and polar regions) . When organic matter, N (Nitrogen), P (Phosphorus), and other nutrients are

enriched in water, cyanobacteria multiply and accumulate into dominant groups. The cyanobacteria blooms, which form

green, red-brown, and red in freshwater or marine, are one of the most notable symptoms of nutrient enrichment or

eutrophication . Cyanobacteria blooms are becoming increasingly common worldwide and pose a serious threat to the

sustainability of aquatic ecosystems, such as Taihu Lake in China, Lake Erie in the United States, Lake Winnipeg in

Canada, and Lake Nieuwe Meer in the Netherlands . Since the 1930s, plenty of studies have been carried out on

cyanobacteria blooms, including the causes of cyanobacteria blooms , the harm of cyanobacteria products and the

symbiosis of algae and bacteria , and the nutrient effect of cyanobacteria blooms .

2. The Pollution of Cyanobacteria Blooms to Water

It is considered that cyanobacteria blooms form when the cyanobacteria reaches 10  cells/mL, or the chlorophyll a (Chla)

concentration reaches 10 μg/L, and a visible covering layer forms on the surface of the water . The cyanobacteria

blooms’ decay process has a more serious impact on the aquatic environment. Aerobic and anaerobic reactions exist in

the degradation process of cyanobacteria, and toxins and odorous gases are released. During the decomposition of

cyanobacteria blooms, a large number of organic substances and soluble nutrients will be released to water, which will

lower the transparency of water, aggravate the eutrophication of water, and form “black spots” . Cyanobacteria blooms

will lead to the acidity of the water, the rising trend of conductivity, the continuous increase in chemical oxygen demand,

and the increase in organic matter concentration in the water . In addition, organic debris formed by cyanobacteria

accumulation has a high decomposition rate in the water, which can be decomposed by 41.9% within 48 h , which will

harm the ecosystem of the water . A large amount of dissolved organic matter (DOM) is released during the decline

of cyanobacteria, and with the progress of the reaction, dissolved organic carbon (DOC) is converted into dissolved

inorganic carbon (DIC), and most of them are, lastly, transformed into humus, which is challenging to degrade .

2.1. Impacts of Cyanobacteria Blooms on Aquatic Fauna

During cyanobacteria blooms, a large number of dead cyanobacteria will sink to the bottom and decompose, consuming

oxygen, which will reduce the dissolved oxygen (DO) in water, thus affecting the living conditions of aquatic fauna,

causing the disappearance of some fish, shellfish, and invertebrates, and decreasing the species diversity of the aquatic

ecosystem . In the apoptosis of cyanobacteria, secondary metabolites such as toxins, odorous substances, and other

substances were released into the water, and the concentration of ammonia (NH ) and microcystins (MCs) will increase

simultaneously, causing acute or chronic adverse effects on aquatic organisms .
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Exposure to MCs leads to lipid peroxidation, DNA damage, and changes in antioxidant enzymes, such as superoxide

dismutase (SOD), peroxidase (POD), and catalase (CAT) in different aquatic organisms. MCs can cause damage to their

circulatory system, digestive system, and immune system. Simultaneously, they will induce changes in detoxification

enzymes such as glutathione S-transferase (GST) and glutathione peroxidase (GPx) . Studies have demonstrated that

the liver is the main target of MCs . By studying the bioaccumulation law of MCs in two snails in a cyanobacteria-bloom

plateau lake, it was found that the hepatopancreas was the main target of two snails . Some reports indicate that the

concentration of MCs in the intestines, gonads, and muscles of Cyprinus carpio was lower but higher in hepatopancreas

. MCs are enriched in the hepatopancreas of Macrobrachium rosenbergii, destroying the structure and function of

hepatopancreas, causing dose-dependent and time-dependent toxic effects . Andersen et al. found that a high dose of

microcystin-LR (MC-LR) could lead to diffuse necrosis and hepatic megalocytosis in the whole liver of Atlantic salmon .

Previous studies have demonstrated that MCs can be transferred to more sensitive organisms through the food

chain/network .

NH  can induce the antioxidant defense of juvenile crucian carp. High concentration NH  has toxic effects on CAT, SOD,

and glutathione (GSH) in the fish liver . Histopathological changes in the gills, liver, and kidney of Oreochromis niloticus
are caused by different concentrations of NH , and include gill congestion, telangiectasia, turbid swelling, edema

degeneration of liver tissue, kidney congestion, and glomerulonephritis . NH  significantly affects the plasma and

hematological parameters of juvenile Megalabrama amblycephala, demonstrating histopathological changes in the gills,

liver, and kidney of fish. The severity of the lesions is different, with the liver exhibiting the most extensive damage,

followed by the gills and kidneys .

In addition, it is reported that MCs and NH  have synergistic effects on the immunotoxicity of aquatic organisms. After

combined poisoning, the peripheral interspace of the lymphocytes of Megalabrama amblycephala is broadened, the

nucleus is atrophied, and the mitochondria are swollen. Moreover, the exposure to algae toxin and NH  has a significant

interaction with macrophage phagocytosis activity, respiratory burst activities, a total number of white blood cells and the

transcriptional levels of sIgM, mIgD, and sIgZ genes of Megalabrama amblycephala .

2.2. Impacts of Cyanobacteria Blooms on Aquatic Flora

The cyanobacteria blooms have strong inhibitory effect on the photosynthetic activity of aquatic flora, leading to leaf death

and irreversible inhibition of photosynthesis . Long-term and high-concentration aggregation of cyanobacteria will

shade, consume oxygen, and release allelochemicals and MCs, resulting in the disappearance of submerged vegetation

. Cyanobacteria blooms lead to the Chla of Potamongeton malaianus and Stuckenia pectinata decreasing by 50% and

56%, respectively .

MCs can induce the reactive oxygen species (ROS) production and an increase in malondialdehyde (MDA), exacerbating

the oxidative damage for aquatic flora . MCs can bind irreversibly with phosphatase-1 (PP1) and phosphatase-2A

(PP2A) covalently, causing a series of biochemical reactions in cells to be disordered and changing chlorophyll contents

and pigment composition in plants .

The anatoxin-a produced by cyanobacteria can cause the disorder of oxidative stress reaction in aquatic flora .

Treatment with 0.01–0.2 μg/mL MC-LR for 96 h can inhibit the growth of Spirodela oligorrhiza . MC-LR concentration of

1.0 μg/L can significantly impede the development of the roots of Lepidium sativum, and a concentration of 10 μg/L can

inhibit the growth of the whole plant . It has also been found that 0.12–3 μg/mL MCs can hinder the growth of Oryza
sativa L. . In addition, MCs can cause the gap of aeration tissue in the rhizomes of Phragmites australis to be blocked

by callus-like tissue, resulting in the gangrene of outer skin tissue in the reed root. When exposed to 10–40 μg/mL of MC-

LR for 120 h, the cytoskeleton of reed root changes (microtubule degradation), and its roots swell and deform .

MCs can damage DNA and produce genotoxicity. Nuclear shrinkage and chromatin condensation can be observed in the

root tip meristem cells of Phragmites australis treated with MCs, and chromatin condensation is often accompanied by

nuclear shrinkage and apoptosis . DNA damage effect of MCs on Oryza sativa root cells by DNA fragmentation and

random amplified polymorphic DNA (RAPD) . Furthermore, the affected biochemical processes involved protein folding

and stress response, protein biosynthesis, regulation of cell signal and gene expression, and energy and carbohydrate

metabolism .

The high concentrations of NH  and nitrate nitrogen (NO -N) released by cyanobacteria decay have toxic effects on

aquatic plants, resulting in the yellowing of plant leaves, inhibition of growth, and root morphological changes . A high

concentration of NH  can also inhibit the absorption of K , Ca  and Mg  by plant cells, resulting in a disturbance of ion
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balance . Studies have also demonstrated that a high concentration of NH  leads to the destruction of the antioxidant

system balance of aquatic flora, and the accumulation of ROS, which leads to the damage of plasma membrane .

2.3. Impact of Cyanobacteria Blooms on Microorganisms in the Aquatic Environment

Studies on the effects of cyanobacteria blooms on microorganisms in water mainly focus on the community structure and

activity of microorganisms, especially at the genus level . Cyanobacteria blooms in the summer, and the abundance of

Proteobacteria in the water and sediment of Zhushan Bay is the highest at the phylum level, followed by Actinomycetes.

At the genus level, the dominant bacteria in the water are GpXI and GpIIa, and the predominant bacteria in the sediment

are Gp6 and GpIIa . Meanwhile, the different stages of cyanobacteria blooms will lead to changes in DO, N, and P in

surface sediments . Studies have studied and analyzed the bacterial community diversity in Poyang Lake waters and

found a specific correlation between DO, Cond, salinity, mineralization, nutrients, and bacterial community diversity index

. In addition, debris formed during the degradation of cyanobacteria will precipitate into the surface sediments,

stimulating the growth of microorganisms. Studies have demonstrated that the total bacterial diversity of water decreases

during cyanobacteria blooms . The decomposition of cyanobacteria will increase the diversity and abundance of

ammoniated bacteria in sediments, among which the relative abundance of Nitrosomonas oligotropha is as high as 75%

.

Studies have demonstrated that the accumulation of cyanobacteria will lead to a change in microbial community structure

and a decrease in diversity in the chironomid larvae gut. The relative abundance of β-proteobacteria increased to 40.6%,

and the relative abundance of δ-proteobacteria decreased to 4.1%. Moreover, cyanobacteria blooms can promote the

expression of the nosZ gene and increase the abundance of nirK denitrifying bacteria . The occurrence of

cyanobacteria blooms will lead to the decrease in α-diversity of the bacterial community .

3. Impacts of Cyanobacteria Blooms on Human Health

Cyanobacteria blooms directly affect drinking water. In 1996, in Caruaru, Brazil, 50 dialysis clinic patients died because of

using water contaminated with MCs . In 1999, the cyanobacteria blooms in Dianchi Lake covered an area of 20 km . In

May 2007, a massive cyanobacteria bloom in Taihu Lake (Wuxi, China) led to a drinking water crisis for 2 million people in

the city of Wuxi . In August 2014, cyanobacteria blooms in Lake Erie increased the concentration of MCs in the drinking

water, threatening the drinking water safety of nearly half a million people .

When cyanobacteria blooms decompose, releasing many odor substances and cyanotoxins, it has been found that 2-

methylisoborneol (MIB) and geosmin are the most common substances that cause odor (musty smell) in drinking water,

and their odor threshold concentrations are only 9 and 4 ng/L, respectively . Among the eight kinds of odor in the table,

except the chemical taste, chloride taste, and medicinal taste, the other five kinds of odor substances are related to odor

compounds produced by algae. Excessive odor content in water affects the quality of drinking water and human health

.

Cyanobacteria can release toxins such as the hepatotoxin class, neurotoxin, and endotoxin. MCs is the most widely

distributed in water, which is a cyclic heptapeptide composed of seven amino acids, mainly produced by Microcystis and

Anabaena . Microcystis is the dominant species of cyanobacteria blooms in Taihu Lake, and its biomass can account

for 40–98% of the total algae biomass . Anabaena is the most common species in cyanobacteria blooms and the only

species with hepatotoxic and neurotoxic secondary metabolites . Turner et al. analyzed the MCs of cyanobacteria in

freshwater ecosystems in the United Kingdom and found that more than 50% of the water bodies had MCs, and of which

about 13% exceeded the World Health Organization (WHO) medium health threshold (20 μg/L) .

The toxins can be accumulated by organisms and transferred through the food chain/network. Cyanotoxins are chronically

toxic to humans, which lead to acute gastroenteritis, respiratory adverse reaction, eye and ear irritation, skin rash, mouth

ulcers, and other diseases . In addition, algal toxins can inhibit the synthesis of protein phosphatase, resulting in

hyperphosphorylation of critical regulatory proteins in the signal transduction process that controls cytoskeleton tissues

.

MCs are hydrophilic and soluble in the blood of organisms. They cannot penetrate the lipid membrane through passive

diffusion . Therefore, most ingested toxins cannot pass through the ileal epithelium, stay in the digestive tract, and are

most likely excreted through feces . However, some studies have demonstrated that ingested MCs can be transported

by bile acid membrane transporters (such as organic anion transporters (OATPs)) through the ileum into the venous blood

flow and from the portal vein into hepatocytes . The liver is the main target organ for the accumulation and

detoxification of MCs. At the same time, MCs can also be detected in other organs (such as the intestine, kidney, brain,
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lung, and heart), though to a much lesser extent. High doses of cyanobacterial toxins can cause acute liver damage,

hepatomegaly, liver hemorrhage, loss of liver cell structure and function, and even biological respiratory arrest .
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