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Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being
widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim
high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally

dynamic patterns of neural activation and connectivity.

EEG functional connectivity data-driven signal acquisition pre-processing

| 1. Introduction

The human brain has always fascinated researchers and neuroscientists. Its complexity lies in the combined
spatial- and temporal-evolving activities that different cerebral networks explicate over three-dimensional space.
These networks display distinct patterns of activity in a resting state or during task execution, but also interact with
each other in various spatio-temporal modalities, being connected both by anatomical tracts and by functional
associations . In fact, to understand the mechanisms of perception, attention, and learning; and to manage
neurological and mental diseases such as epilepsy, neurodegeneration, and depression, it is necessary to map the

patterns of neural activation and connectivity that are both spatially distributed and temporally dynamic.

The analysis of the complex interactions between brain regions has been shaping the research field of
connectomics &, a neuro-scientific discipline that has become more and more renowned over the last few years !,
The effort to map the human connectome, which consists of brain networks, their structural connections, and
functional interactions &, has given life to a number of different approaches, each with its own specifications and
interpretations HBIBI7E Some of these methods, such as covariance structural equation modeling & and the
dynamic causal modeling 2911 are based on the definition of an underlying structural and functional model of
brain interactions. Conversely, some others, such as Granger causality 12 transfer entropy 13! directed
coherence 14131 partial directed coherence 187 and the directed transfer function 18, are data-driven and
based on the statistical analysis of multivariate time series. Interestingly, while non-linear model-free and linear
model-based approaches are apparently unrelated, as they look at different aspects of multivariate dynamics, they
become clearly connected if some assumptions, such as the Gaussianity of the joint probability distribution of the
variables drawn from the data 19201 are met. Under these assumptions, connectivity measures such as Granger
causality and transfer entropy, as well as coherence 21 and mutual information rate 22231 can be mathematically
related to each other. This equivalence forms the basis for a model-based frequency-specific interpretation of
inherently model-free information-theoretic measures 24!, Furthermore, emerging trends, such as the development

of high-order interaction measures, are coming up in the neurosciences to respond to the need for providing more
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exhaustive descriptions of brain-network interactions. These measures allow one to deal with multivariate
representations of complex systems 23281271 showing their potential for disentangling physiological mechanisms
involving more than two units or subsystems [28]. Additionally, more sophisticated tools, such as graph theory 22139
Bl are widely used to depict the functional structure of the brain intended as a whole complex network where

neural units are highly interconnected with each other via different direct and indirect pathways.

Mapping the complexity of these interactions requires the use of high-resolution neuroimaging techniques. A
number of brain mapping modalities have been used in recent decades to investigate the human connectome in
different experimental conditions and physiological states B2I33I34] including functional magnetic resonance
imaging (fMRI) [33I38I37I38]  nhositron emission tomography, functional near-infrared spectroscopy, and
electrophysiological methods such as electroencephalography (EEG), magnetoencephalography (MEG), and
electrocorticography (ECoG) (141391140 The most known technique used so far in this context is fMRI, which allows
one to map the synchronized activity of spatially localized brain networks by detecting the changes in blood
oxygenation and flow that occur in response to neuronal activity “. However, fMRI lacks in time resolution, and
therefore cannot be entrusted with detecting short-living events, which can instead be investigated by EEG, a low-
cost non-invasive imaging technique allowing one to study the dynamic relations between the activity of cortical
brain regions and providing different information with respect to fMRI 28, Being exploited in a wide range of clinical
and research applications 2242143144 EEG has allowed researchers to identify the spatio-temporal patterns of
neuronal electric activity over the scalp with huge feasibility, thanks to advances in the technologies for its
acquisition, such as the development of high-density EEG systems 42I48] and their combinations with other

imaging modalities, robotics or neurostimulation [2Z148](491(50]

| 2. Brain Connectivity

Brain connectivity aims at describing the patterns of interaction within and between different brain regions. This
description relies on the key concept of functional integration B, which describes the coordinated activation of
systems of neural ensembles distributed across different cortical areas, as opposed to functional segregation,
which instead refers to the activation of specialized brain regions. Brain connectivity encompasses various
modalities of interaction between brain networks, including structural connectivity (SC), functional connectivity

(FC), and effective connectivity (EC).

SC is perhaps the most intuitive concept of connectivity in the brain. It can be intended as a representation of the
brain fiber pathways that traverse broad regions and correspond with established anatomical understanding 52, As

such, SC can be intended as a purely physical phenomenon.

Some studies suggest that the repertoire of cortical functional configurations reflects the underlying anatomical
connections, as the functional interactions between different brain areas are thought to vary according to the

density and structure of the connecting pathways [B2IB3IBAIBSIEEITEEISI This leads to the assumption that

investigating the anatomical structure of a network, i.e., how the neurons are linked together, is an important

prerequisite for discovering its function, i.e., how neurons interact together, synchronizing their dynamic activity.
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Moreover, according to the original definition proposed in Y, FC does not relate to any specific direction or
structure of the brain. Instead, it is purely based on the probabilities of the observed neural responses. No
conclusions were made about the type of relationship between two brain regions. The only comparison is

established via the presence or absence of statistical dependence.

Conversely, EC was originally defined in terms of the directional influence that one neural unit exerts over another,
thereby requiring the generation of a mechanistic model of the cause—effect relationships. In a nutshell, while FC
was intended as an observable phenomenon quantified through measures of statistical dependencies, such as
correlation and mutual information, EC was determined to explain the observed functional dependencies based on

a model of directed causal influences €9,

In the last two decades, these concepts have been widely discussed and have evolved towards various
interpretations (61162631641 EC can be assessed either from the signals directly (i.e., data-driven EC) or based on
an underlying model specifying the causal pathways given anatomical and functional knowledge (i.e., EC is a
combination of both SC and FC) 8263 The most exploited data-driven methods based on time-series analysis
include adaptations of Granger causality 2263 transfer entropy 22l partial directed coherence R8I and the
directed transfer function (18 and are designed to identify the directed transfer of information between two brain
regions. Conversely, mechanistic models of EC focus on either (i) the determination of the model parameters that
align with observed correlation patterns in a given task, such as in the case of the covariance structural equation
modeling & and dynamic causal modeling 29, or (ii) perturbational approaches to investigate the degree of causal

influence between two brain regions 68,

3. Functional Connectivity: A Classification of Data-Driven
Methods

3.1. Model-Based vs. Model-Free Connectivity Estimators

AR model-based data-driven approaches typically assume linear interactions between signals. Specifically, in a
linear framework, coupling is traditionally investigated by means of spectral coherence, partial coherence [18121]67]
correlation coefficient, and partial correlation coefficient (211, On the other hand, different measures have been
introduced for studying causal interactions, such as directed transfer function 28 directed coherence 24131 partial
directed coherence 28171 and Granger causality 1268 Conversely, more general approaches, such as mutual
information U6 and transfer entropy 1879 can investigate non-linear dependencies between the recorded
signals, starting from the definition of entropy given by Shannon 2 and based on the estimation of probability
distributions of the observed data. Importantly, under the Gaussian assumption 19 model-free and model-based
measures converge and can be inferred from the linear parametric representation of multivariate vector
autoregressive (VAR) models [12120]124]

Constituting the most employed metrics, linear model-based approaches are sufficient for identifying the wide

range of oscillatory interactions that take place under the hypothesis of oscillatory phase coupling 8. Linear-model-
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based approaches allow the frequency domain representations of multiple interactions in terms of transfer
functions, partial coherence, and partial power spectrum decomposition B2, This feature is extremely helpful in
the study of brain signals that usually exhibit oscillatory components in well-known frequency bands, resulting from

the activity of neural circuits operating as a network 11,

3.2. Time-Domain vs. Frequency-Domain Connectivity Estimators

It is important to distinguish between time- and frequency-domain techniques, as the latter reveal connectivity
mechanisms related to the brain rhythms that operate within specific frequency bands [2LB39 while approaches
such as correlation, mutual information, Granger causality, and transfer entropy are linked to a time-domain
representation of the data, some others, such as coherence, directed transfer function, directed coherence, and
partial directed coherence, assume that the acquired data are rich in individual rhythmic components and exploit
frequency-domain representations of the investigated signals. Although this can be achieved through the
application of non-parametric techniques (Fourier decomposition, wavelet analysis, Hilbert transformation after
band-pass filtering Z2)), the utilization of parametric AR models has collected great popularity, allowing one to
evaluate brain interactions within specific spectral bands with physiological meanings 1. Furthermore, time-
frequency analysis approaches, which simultaneously extract spectral and temporal information 23, have been
extensively used to study changes in EEG connectivity in the time-frequency domain 473761 and in combination
with deep learning approaches for the automatic detection of schizophrenia 22 and K-nearest neighbor classifiers

for monitoring the depth of anesthesia during surgery [Z8l.

| 4. Functional Connectivity Estimation Approaches
4.1. Time-Domain Approaches

Several time-domain approaches devoted to the study of FC have been developed throughout the years. Despite
phase-synchronization measures, such as the phase locking value /2 and other model-free approaches % being
still abundantly used in brain-connectivity analysis, linear methods are easier to use and sufficient to capture brain
interactions taking place under the hypothesis that neuronal interactions are governed by oscillatory phase

coupling €.

In a linear framework, ergodicity, Gaussianity, and wide-sense stationarity (WSS) conditions are typically assumed
for the acquired data, meaning that the analyzed signals are stochastic processes with Gaussian properties and
preserve their statistical properties as a function of time. These assumptions are made, often implicitly, as
prerequisites for the analysis, in order to assure that the linear description is exhaustive and the measures can be
safely computed from a single realization of the analyzed process. Under these assumptions, the dynamic
interactions between a realization of M Gaussian stochastic processes (e.g., M EEG signals recorded at different
electrodes) can be studied in terms of time-lagged correlations. In the time domain, the analysis is performed via a

linear parametric approach grounded on the classical vector AR (VAR) model description of a discrete-time, zero-
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mean, stationary multivariate stochastic Markov process, S = [X1 .. .XM]T . Considering the time step n as the
current time, the dynamics of S can be completely described by the VAR model [21124]:

p
Sp = Z ArSn k + Un, (1)
k=1

where S, = [XLn...XM,n]T is the vector describing the present state of S, and Spn=[STn-1...STn—p]T
describes its past states until lag p, which is the model order defining the maximum lag used to quantify
interactions; Ak is the MxM coefficient matrix quantifying the time-lagged interactions within and between the M
processes at lag k; and U is a Mx1 vector of uncorrelated white noise with an MxM covariance matrix
2=diag(0c211,...02MM). Multivariate methods based on VAR models as in (1) depend on the reliability of the fitted
model, and especially the model order. While lower model orders can provide inadequate representations of the
signal, orders higher than are strictly needed tend to provide overrepresentation of the oscillatory content of the
process and drastically increase noise B, One should pay attention to the procedure for selecting the optimum
model order, which can be set according to different criteria, such as the Akaike information criterion (AIC) 2 or
the Bayesian information criterion (BIC) [83],

It should be noted that, in multichannel recordings such as with EEG data, the analysis can be multivariate, which
means taking all the channels into account and fitting a full VAR model, as in (1), or it can be done by considering
each channel pair separately, which means fitting a bivariate AR model (2AR) in the form of (1) with M=2:

p
Zn =) BiZn + Wh, 2)
k=1

where Z=[XiX]]T, ij=1,...,M (i#), is the bivariate process containing the investigated channel pair, with
Zn=[Xi,nX},n]T and Zpn=[ZTn-1...ZTn—-p]T describing, respectively, the present and p past states of Z; Bk is the 2x2
coefficient matrix quantifying the time-lagged interactions within and between the two processes at lag k, and W is
a 2x1 vector of uncorrelated white noises with 2x2 covariance matrix A. The pairwise (bivariate) approach typically
provides more stable results, since it involves the fitting of fewer parameters but leads to loss of information due to
the fact that only a pair of time series is taken into account B4, Indeed, since there are various situations that
provide significant estimates of connectivity in the absence of true interactions (e.g., cascade interactions or
common inputs) 2184 the core issue becomes whether the estimate of pairwise connectivity reflects a true direct
connection between the two investigated signals or is the result of spurious dynamics between multiple time series.
To answer this question, it is recommended to take into account the information from all channels when estimating
the interaction terms between any pair of time series. Even if at the expense of increased model complexity

resulting in a more difficult model identification process, moving from a pairwise to a multivariate approach can
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significantly increase the accuracy of the reconstructed connectivity patterns. This would allow distinguishing direct

from indirect interactions through the use of extended formulations obtained through partialization or conditioning
procedures 18][211[85],

4.2. Frequency-Domain Approaches

To examine oscillatory neuronal interactions and identify the individual rhythmic components in the measured data,
representations of connectivity in the frequency domain are often desirable. The transformation from the time
domain to the frequency domain can be carried out by exploiting parametric (model-based) or non-parametric
(model-free) approaches. Non-parametric signal-representation techniques are mostly based on the definition of
the power spectral density (PSD) matrix of the process as the Fourier transform (FT) of Ry , on the wavelet
transformation (WT) of data, or on Hilbert transformation following band-pass filtering 2. In general, they bypass
the issues of the ability of linear AR models to correctly interpret neurophysiological data and the selection of the
optimum model order. The latter choice can be problematic, especially with brain data, because it strongly depends
on the experimental task, the quality of the data and the model estimation technique 8. However, the non-
parametric spectral approach is somewhat less robust compared to parametric estimates, since it can be
characterized by lower spectral resolution; e.g., it has been shown to be less efficient in discriminating epileptic

occurrences in EEG data 87,

On the other hand, parametric approaches exploit the frequency-domain representation of the VAR model, in the
multivariate (1) or in the bivariate (2) case, which means computing the model coefficients in the Z-domain and
then evaluating the model transfer function H(w) on the unit circle of the complex plane, where w = 27ris is the
normalized angular frequency and fs is the sampling frequency 2. The MxM PSD matrix can then be computed

using spectral factorization as

P(w) = H(w)IH (w), (3)

where * stands for the Hermitian transpose [2; note that X is replaced by A in the case of (2), i.e., when M=2. It is
worth noting that, while the frequency-domain descriptions ubiquitously used are based on the VAR model
representation, their key element is actually the spectral factorization theorem reported above and that approaches

other than VAR models can be used to derive frequency-domain connectivity measures (€8],

4.3. Information-Domain Approaches

The statistical dependencies among electrophysiological signals can be evaluated using information theory.
Concepts of mutual information, mutual information rate, and information transfer are widely used to assess the
information exchanged between two interdependent systems 8969 the dynamic interdependence between two
systems per unit of time 22238 and the dynamic information transferred to the target from the other connected

systems 379 respectively. The main advantage of these approaches lies in the fact that they are probabilistic
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and can thus be stated in a fully model-free formulation. On the other hand, their practical assessment in the
information domain is not straightforward because it comprises the estimation of high-dimensional probability
distributions 2, which becomes more and more difficult as the number of network nodes increases in multichannel
EEG recordings. Nevertheless, information-based metrics can also be expressed in terms of predictability
improvement, such that their computation can rely on linear parametric AR models, where concepts of prediction
error and conditional entropy, GC and information transfer, or TD and mutual information rate, have been linked to
each other 19l1200[90IB1] |ndeed, it has been demonstrated that, under the hypothesis of Gaussianity, predictability
improvement and information-based indexes are equivalent 121, Based on the knowledge that stationary Gaussian
processes are fully described in terms of linear regression models, a central result is that for Gaussian data, all the
information measures can be computed straightforwardly from the variances of the innovation processes of full and

restricted AR models 2],

4.4. Other Connectivity Estimators

Brain connectivity can be estimated through a large number of analyses applied to EEG data. Multivariate time-
series analysis has traditionally relied on the use of linear methods in the time and frequency domains.
Nevertheless, these methods are insufficient for capturing non-linear features in signals, especially in
neurophysiological data where non-linearity is a characteristic of neuronal activity B9, This has driven the
exploration of alternative techniques that are not limited by this constraint 422l Moreover, the utilization of AR
models with constant parameters, and the underlying hypotheses of Gaussianity and WSS of the data, can be key
limitations when stationarity is not verified 3. A number of approaches have been developed to overcome this
issue, providing time-varying extensions of linear model-based connectivity estimators using adaptive AR models

with time-resolved parameters, in which the AR parameters are functions of time [24125](96]

| 5. EEG Acquisition and Pre-Processing

The acquisition and conditioning of the EEG signal represent two important aspects with effects on the entire
subsequent processing chain. The main steps of acquisition and pre-processing are indicated in Figure 1. An

example of application of the pre-processing pipeline to experimental EEG is shown in Figure 2.
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Figure 1. Main steps in EEG acquisition and pre-processing. In general, source localization is not mandatory, as

represented by the dashed round brackets.
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Figure 2. Schematic representation of the pre-processing pipeline applied to EEG signals acquired on the scalp
(s253 recording of the subject 2 that could be found in

https://eeglab.org/tutorials/10_Group_analysis/study_creation.html#description-of-the-5-subject-experiment-

tutorial-data, accessed on 15 February 2023). (A) Unipolar EEG signals are acquired using a mastoid reference
(Ref, in red). For clarity, only a limited number of the recorded signals, among the original 30 channels, is plotted.
The average re-referencing process and the pre-processed signals are illustrated below. Notably, red arrows
indicate blinking artifacts that are clearly visible. (B) The re-referenced signals are filtered using a 1-45 Hz zero-
phase pass-band filter, followed by independent component analysis (ICA) to extract eight independent
components (ICs), shown on the right. (C) The first IC, suspected to be an artifact, is analyzed, with a scalp-
shaped heatmap assessing its localization in the frontal area and its temporary coincidence with the artifacts

shown in panel (A). After removing the first IC, the cleaned signal is plotted at the bottom of the panel.

Sampling frequency, the number of electrodes, and their positioning, each have an important role in assessing
connectivity; too low of a sampling frequency cannot be used to analyze high-frequency bands for the Nyquist—
Shannon sampling theorem 7, and the electrode density defines with which accuracy and reliability further
processing will be performed 149,

An EEG signal is a temporal sequence of electric potential values. The potential is measured with respect to a
reference, which should be ideally the potential at a point at infinity (thus, with a stable zero value). In practice, an
ideal reference cannot be found, and any specific choice will affect the evaluated connectivity BI98l Unfortunately,
as for most of the FC analysis pipeline, there is no gold standard for referencing, and this is clearly a problem for
cross-study comparability 2.

5.1. Resampling
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Nowadays, EEG signal is usually acquired with a sampling rate (SR) equal or superior to 128 Hz, since this value
is the lower base-2-power that permits one to capture most of the information content in EEG signal and a big part
of the y band. It is noticeable that high-frequency oscillations (HFOs), such as ripples (80—200 Hz) and fast ripples
(200-500 Hz), will not be captured with these SRs [100I101][102][103] \joreover, there are studies suggesting that low

SRs affect correlation dimensions, and in general, non-linear metrics [1941105],

5.2. Filtering and Artifact Rejection

Filtering EEG is a necessary step for the FC analysis pipeline, not only to extract the principal EEG frequency
waves, but particularly to reduce the amounts of noise and artifacts present in the signal and to enhance its SNR.
Research suggests the use of finite impulse response (FIR) causal filters that could be used also for real-time (RT)
applications, or infinite impulse response (lIR) filters, which are less demanding in terms of filter orders but distort
phase, unless they are applied with reverse filtering, thereby making the process non-causal and not applicable for
RT applications. In general, if sharp cut-offs are not needed for the analysis, FIR filters are recommended, since

they are always stable and easier to control 1961,

If one is interested in investigating FC in the y

band, electrical line noise at 50 or 60 Hz could be a problem, since it is not fully removable with a low-pass filter.
Notch filters are basically band-stop filters with a very narrow transition phase in the frequency domain, which in
turn leads to an inevitable distortion of the signal in the time domain, such as smearing artifacts %81, To avoid this
problem, some alternatives have been developed. A discrete Fourier transform (DFT) filter is obtained by
subtracting from the signal an estimation of the interference obtained by fitting the signal with a combination of sine
and cosine with the same frequency as the interference. It avoids potential distortions of components external to
the power-line frequency. It assumes that the power-line noise has constant power in the analyzed signal segment.
As this hypothesis is not strictly verified in practice, it is recommended to apply the DFT technique to short data

segments (1 s or less).

Another proposed technique is CleanLine, a regression-based method that makes use of a sliding window and
multitapers to transform data from the time domain to the frequency domain, thereby estimating the characteristics
of the power line noise signal with a regression model and subtracting it from the data 197, This method eliminates
only the deterministic line components, which are optimal, since EEG signal is a stochastic process, but in the

presence of strong non-stationary artifacts, it may fail 98,

It is pretty normal that EEG signals can be corrupted by many types of artifacts, defined as any undesired signal
which affects the EEG signal whose origin cannot be identified in neural activity. Generators of these undesirable
signals could be physiological, such as ocular artifacts (OAs such as eye blink, saccade movement, rapid eye
movements), head or facial movements, muscle contraction, or cardiac activity 29119 power-line noise, electrode
movements (due to non-properly connected electrodes), and interference with other electrical instrumentation are
non-physiological artifacts 1111, Artifact management is crucial in the analysis of connectivity. In fact, their presence

in multiple electrodes can result in overestimation of brain connectivity, skewing the results [£21113]
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The most effective way for dealing with artifacts is to apply prevention in the phase of acquisition to avoid as much
as possible their presence, for example, by making acquisitions in a controlled environment, double-checking the
correct positioning of electrodes, or instructing the patients to avoid blinking the eyes in certain moments of the
acquisition. In fact, eye blinks are by far the most common source of artifacts in the EEG signal, especially in the
frontal electrodes 141151 They are shown as rapid, high-amplitude waveforms present in many channels, whose
magnitudes exponentially decrease from frontal to occipital electrodes. However, saccade movements produce
artifacts, generating an electrooculographic signal (EOG). Acquisition of this signal, concurrently with the EEG
signal, is known to be a great advantage in identifying and removing ocular artifacts, since vertical (VEOG),
horizontal (HEOG), and radial (REOG) signals diffuse in different ways through the scalp 116,

Once the parts of the signals corrupted by the artifacts have been identified, it is still common practice to eliminate
these portions, avoiding alterations on the signal that could lead to spurious connectivity. As for channel rejection,

however, it is preferable to retain as much information as possible 117,

5.3. Bad Channel Identification, Rejection, and Interpolation

It could happen that some EEG channels present a high number of artifacts (eye blink, muscular noise, etc.) or
noise, due to bad electrode-scalp contact. In these cases, the rejection of these channels could be an option.
However, it is necessary to check whether the deleted channels are not fundamental and the remaining channels
are sufficient to carry on the analysis, considering also that deleting channels will result in an important loss of
information that is likely not recovered anymore. Some authors discussed the criteria for detection of bad channels
and suggested considering the proportion of bad channels with respect to the total to assess the quality of the

dataset (for example, imposing a maximum of 5%) [118],

Identification of bad channels could be performed visually or automatically. Visual inspection requires certain
experience with EEG signals to decide if a channel is actually not recoverable and needs to be rejected [1121120]
Indeed, this process is highly subjective. Automatic detection of bad channels could be performed in various ways.
A channel correlation method identifies the bad channels by comparing their divergence from the Pearson
correlation distribution among each pair of channels with the other couples. This method assumes high correlations
between channels due to the volume-conduction effect proper of the EEG signal, which is discussed in detail in the
source localization section. High standard deviation of an EEG signal can be an indicator of the presence of a great
amount of noise. By setting a proper threshold, the standard deviation can be a useful index for identifying bad

channels.

5.4. Re-Referencing

As described in the previous section, many decisions are made during the acquisition of the signals; however,
some of them are revertible. Re-referencing and down-sampling is one of them. It consists of changing the
(common) reference of each EEG channel into another one by performing for each channel the addition of a fixed

value (notice that it is a fixed value in space, i.e., common for all channels, but not in general constant in time).
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Re-reference with respect to a new reference channel can be performed by simply subtracting each channel with
the new reference. In most cases, average reference (CAR) is considered to be a good choice, especially if
electrodes cover a large portion of the scalp with the assumption that the algebraic sum of currents must be zero in
the case of uniform density of sources 121, |t consists of referencing all the electrode signals with respect to a
virtual reference that is the arithmetic mean of all the channel signals. Due to charge conservation, the integral of
the potential over a closed surface surrounding the neural sources is zero. Obviously, the EEG channels give only
a discrete sampling of a portion of that surface, so that the virtual reference can be assumed to be only
approximately zero. However, it could be much better than using a single location as reference, such as an EEG
channel or the mastoid (both LM and LR), which have been shown to generate larger distortion than the average
reference 112,

| 6. Source Connectivity Analysis

Measuring information dynamics from EEG signals on the scalp is not straightforward due to the impact of volume
conduction, which can modify or obscure the patterns of information flow across EEG electrodes (122, This effect is
due to the electrical conductance of the skull, which serves as a support to diffuse neural activity in all the
directions and for this reason is also known as field spread problem. The neural current sources are related to the
Poisson equation to the electrical potential, which diffuses across the scalp and can be measured by many
electrodes, also pretty far from the original source. This is the reason why interpreting scalp-level connectivity
requires caution. In fact, the estimated FC between two electrodes could be reflecting the activation of a single
brain region, rather than two functionally connected regions. Even though this effect can be compensated for when
working with scalp EEG signals [122l123] it js often recommended to use source signal reconstruction to obtain a
more accurate representation of the underlying neural network. This is because the source-based network

representation is considered a more accurate approximation of the real neural network structure 1241,
The general pipeline that source localization algorithms follow is based on this two-step loop 123:

» Forward problem—definition of a set of sources and their characteristics and simulation of the signal that would
be measured (i.e., the potential on the scalp) knowing the physical characteristics of the medium that makes it
diffuse;

» Inverse problem—comparison of the signal generated by the head model with the actual measured EEG and

adjustment of the parameters of the source model to make them as similar as possible.

The first part, also known as estimation problem, can be carried out by defining a proper head model using
boundary element models (BEMS) or finite element models (FEM). The second part of the pipeline is also called
the appraisal problem, and it is not trivial at all, being one of the fundamental challenges in EEG processing
analysis. This process is in fact formally an inverse ill-posed problem, where there exists an infinite number of

combinations of sources that can explain the acquired signal (28],
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