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The interaction between cluster of differentiation 47 (CD47) on cancer cells and signal regulatory protein alpha

(SIRPα) on immune cells, such as macrophages and dendritic cells, generates a “don’t eat me” signal. This is a

common mechanism that provides cancer cells an escape from the innate immune system. Several therapeutics

directed to CD47 or SIRPα have entered early clinical trials in recent years.

CD47  cancer

1. Background

In the past decade, the field of cancer immunotherapy has rapidly advanced, establishing a crucial role for immune

checkpoint blockers in the treatment of a variety of cancer types. In parallel with these remarkable clinical

developments, further efforts have focused on ways of unleashing adaptive immune responses against cancer.

CD47, a cell surface molecule overexpressed by several cancer types that facilitates immune escape from

macrophages, dendritic cells and natural killer cells, and its ligand SIRPα, have emerged as potential therapeutic

targets. A number of agents directed to CD47/SIRPα have been developed and demonstrated preclinical activity.

Early phase clinical trials are investigating CD47/SIRPα directed agents with available data, suggesting safety and

preliminary activity. 

2. Role of CD47/SIRPα in Cancer

In the early 1990s, the first oncological studies of CD47 identified it as a potential tumor marker for ovarian cancer

. This was followed by investigations on a wide variety of solid and hematological cancer types, including head

and neck small-cell carcinoma (HNSCC), breast cancer, acute myeloid leukemia (AML), non-Hodgkin’s lymphoma

(NHL), myeloma demonstrating differential overexpression of CD47 between cancer cells and matched normal

cells .

The role of the CD47/SIRPα interaction in providing an escape mechanism for cancer cells from macrophage

targeting has been well described. Human-derived xenograft models for several types of malignancies

demonstrated sensitivity to CD47-blocking antibodies. In culture, these antibodies induced the macrophage-

mediated phagocytosis of tumor cells . The impact of the CD47 blockade on macrophage

populations within the tumor microenvironment was also studied. In brief, TAMs display different polarization states

between M1 macrophages with anti-tumor phenotypes and M2 macrophages with pro-tumor and

immunosuppressive phenotypes . In a human glioblastoma model, anti-CD47 therapy increased M1
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macrophages within the tumor. This finding suggests that anti-CD47 therapy may play a role in shifting the

phenotype of macrophages toward the anti-tumorigenic M1 subtype . CD47 signaling also participates in

macrophage recruitment into tumors. Weiskopf and colleagues showed that phagocytosis, following anti-CD47

treatment, causes systemic and local secretion of chemokines and cytokines that recruit macrophages into tumors

in mice engrafted with small-cell lung cancer (SCLC) cell lines .

Beyond the activation of macrophage-mediated tumor killing, CD47-SIRPα interruption exerts other

multidimensional positive effects on the immune response against cancer cells. For example, CD47-SIRPα

blockade augments antibody dependent cellular cytotoxicity (ADCC) via the inhibition of SIRPα, expressed on the

surface of NK cells . Kim and colleagues demonstrated that impaired NK cell activity present in HNSCC cell

lines overexpressing CD47 could be reversed with anti-CD47 antibodies . CD47-SIRPα antagonist agents with

an intact or even partially inactive Fc portion embedded in their structure may foster anti-tumor activity via antibody

opsonization and destruction of target cells through ADCC or antibody-dependent cellular phagocytosis (ADCP)

. In addition, CD47/SIRPα interaction also has roles in tumor cell apoptosis, proliferation and migration .

CD47 inhibition can also negatively impact the function of other CD47 ligands, such as TSP-1 and integrins. These

indirect effects may contribute to the anti-tumor and pro-inflammatory activity of CD47 inhibition. Despite

contrasting evidence, a growing body of research highlights the role of TSP-1 in cell proliferation, invasion,

metastatic potential, and worse survival rates, either through its interaction with CD47 or independently .

Notably, Kamijo and colleagues reported an association between high TSP-1 expression and worse disease-free

survival in cutaneous T cell lymphoma patients. TSP-1 was found to be overexpressed in cutaneous T cell

lymphoma, and anti-CD47 antibodies led to the inhibition of TSP-1-mediated cell proliferation in vivo .

Preclinical work has suggested a synergy between the cytotoxic agents and the CD47 inhibitors, especially when

cytotoxic therapies were introduced prior to CD47-directed therapies. Neoantigens and nucleic acid remnants,

produced from dying cancer cells and released into the tumor microenvironment after chemotherapy, may

potentiate anti-CD47 activity . In the context of hematologic malignancies, in vitro studies showed that

azacytidine (a standard of care DNA hypomethylating agent used in the treatment of AML) and myelodysplastic

syndrome and venetoclax (a B-cell lymphoma-2 inhibitor used in AML), induces the expression of other pro-

phagocytic pathway components such as calreticulin and CD47 .

Perhaps more intriguingly, the macrophages involved in phagocytosis function as antigen-presenting cells, linking

innate and adaptive immunity . Thus, targeting the CD47-SIRPα axis, either through the CD47 or SIRPα

blockade, may also promote antigen-presenting cell function, and stimulate T cell-mediated anti-cancer immunity

(Figure 1) . Studies in preclinical models with cancer types including chronic lymphocytic leukemia, colon

cancer, melanoma, HNSCC, and glioblastoma, showed the induction of antitumor cytotoxic T cell populations, and

reduced regulatory T cell populations in response to anti-CD47 treatment . These observations were

replicated in ex vivo studies. For example, Tao and colleagues assessed tumor samples from esophageal

squamous cell cancer patients, showing an inverse relationship between CD8 T cell density and CD47 expression.

In mice models with esophageal squamous cell cancer, treatment with anti-CD47 antibodies led to an increase in

PD-1 and CTLA-4 expression. Treatment with the combination of CD47, PD-1 and CTLA-4 inhibitors yielded
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significantly improved survival in mice, compared with anti-CD47 monotherapy or PD-1 and CTLA-4 inhibitor

combination, suggesting a rationale for combinatory therapeutic approaches to obtain synergistic effects .

Figure 1. CD47/SIRPα interaction leading to repression of phagocytosis and therapeutic approaches blocking

CD47/SIRPα axis.

Clinical implications of CD47 overexpression were also studied in various cancer types with the majority showing

an inverse relationship between CD47 overexpression and clinical outcomes . Chao et al. used flow cytometry

and found that NHL cells had two-fold greater CD47 expression than normal germinal center and peripheral blood

B cells. Grouping patient samples based on CD47 mRNA expression levels, investigators showed improved overall

survival in patients with CD47 low tumors, especially diffuse large B cell lymphoma (DLBCL), B cell chronic

lymphocytic leukemia, and mantle cell lymphoma subsets . Majeti and colleagues, showed high CD47

expression by gene expression arrays and flow cytometry in leukemia stem cells, compared with normal

counterparts in a group of 137 AML patients. Compared with those with low CD47 expression, patients with high

CD47 expression had significantly worse overall survival rates (22.1 vs 9.1 months, hazard ratio (HR): 2.02) and

event free survival (17.1 vs 6.8 months, HR 1.94) . Analyzing immunohistochemistry staining of CD47 in bone

marrow biopsy samples from 248 AML patients, Galli et al. detected high CD47 staining in one-fourth of the patient

samples. Samples with high CD47 staining had higher median blast count, median bone marrow infiltration, and

disease burden. Although there was a trend towards unfavorable progression free survival in patients with high

CD47, no statistical difference was observed in median progression-free survival, or overall survival . Melanoma

patients with tumors bearing CD47 overexpression were found to have worse overall survival rates and higher

rates of distant metastasis . Similarly, head and neck cancer patients with tumors bearing robust CD47
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immunohistochemistry staining had diminished overall survival, compared with those with low CD47 staining . A

study of ovarian cancer demonstrated that increased CD47 expression is associated with worse prognosis,

increased migration and invasion, and the induction of epithelial-mesenchymal transition .

3. Therapies Targeting CD47/SIRPα in Cancer

As a result of the promising preclinical data regarding the anti-tumor activity of CD47/SIPRα blockade obtained

from in vivo and in vitro studies, several molecules have been developed and are undergoing clinical testing.

Functionally, therapeutics under investigation may be classified as (1) CD47 targeting agents, (2) SIRPα targeting

agents and (3) bispecific targeting agents. Table 1 provides a comprehensive list of the ongoing clinical trials of the

CD47/SIRPα targeting therapeutics at the time of this publication. Although most of those approaches are currently

being tested in early-phase clinical trials to assess safety and tolerability, available data from a number of

published studies has revealed promising activity and favorable tolerability. In addition to being tested on their own,

trials of combinations with other anti-tumor agents are underway. Inspired by the fact that CD47/SIRPα signaling

limits the efficacy of tumor-opsonizing antibodies, a number of clinical trials are evaluating agents targeting this

axis in combination with agents such as rituximab, cetuximab and trastuzumab . Histone deacetylase

(HDAC) inhibitors have been shown to enhance checkpoint inhibitor therapy by decreasing immune suppressive

cells and increasing tumor antigen presentation . Given the possible enhancement of tumor immunity,

combinations of HDAC inhibitors and CD47 targeting therapies are underway. Other strategies employ a

combination of CD47 targeted therapies with immune checkpoint inhibitors and chemotherapies.

Table 1. Clinical trials testing agents targeting CD47/SIRPα axis.
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Agent Therapeutic
Target Design Phase Disease Site Accrual

Goal Identifier

Monoclonal Antibodies

IBI188
(Letaplimab)

CD47

IBI188 +/− rituximab I
Metastatic solid

tumors or
lymphoma

92 NCT03717103

IBI188 +/−
azacitidine

I
Myelodysplastic

syndrome
12 NCT04485065

Hu5F9-G4
(Magrolimab)

CD47 Hu5F9-G4
(Magrolimab) +
Pembrolizumab

II
Hodgkin’s
lymphoma

24 NCT04788043

Hu5F9-G4
(Magrolimab)

I
Hematologic
malignancies

20 NCT02678338

Hu5F9-G4
(Magrolimab) +
acalabrutinib +

I Non-Hodgkin’s
Lymphoma

30 NCT03527147



Cancer Therapy Targeting CD47 | Encyclopedia.pub

https://encyclopedia.pub/entry/18169 5/14

Agent Therapeutic
Target Design Phase Disease Site Accrual

Goal Identifier

rituximab or other
combinations without

Hu5F9-G4
(Magrolimab)

Hu5F9-G4
(Magrolimab) +

Obinutuzumab +
venetoclax

I
Non-Hodgkin’s

Lymphoma
76 NCT04599634

ZL-1201 CD47 ZL-1201 I

Metastatic solid
tumors or
refractory

lymphomas

66 NCT04257617

STI-6643 CD47 STI-6643 I
Metastatic solid

tumors
24 NCT04900519

CC-9002 CD47
CC-90002 +/
−rituximab

 

Part A: Metastatic
solid tumors,

multiple Myeloma
or non-Hodgkin’s

lymphoma
Part B, relapsed
and/or refractory
CD20-positive

NHL

60 NCT02367196

AK117 CD47

AK117 I
Metastatic solid

tumors or
lymphoma

162 NCT04728334

AK117 + azacitidine I/II
Myelodysplastic

syndrome
190 NCT04900350

AO-176 CD47

AO-176 +/−
paclitaxel

I/II
Metastatic solid

tumors
132 NCT03834948

AO-176 +/−
dexamethasone or
dexhamethasone +

bortezomide

I Multiple myeloma 102 NCT04445701

IMC-002 CD47 IMC-002 I
Metastatic solid

tumors or
lymphoma

24 NCT04306224

TQB2928 CD47 TQB2928 I Metastatic solid
tumors or

20 NCT04854681
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Agent Therapeutic
Target Design Phase Disease Site Accrual

Goal Identifier

hematologic
malignancies

FSI-189 SIRPα
FSI-189 +/−

rituximab
I

Non-Hodgkin’s
lymphoma (B-cell)

63 NCT04502706

BI 765063 SIRPα
BI 765063 +/− PD-1

inhibitor
I

Metastatic solid
tumors with SIRPα

polymorphism
116 NCT03990233

Bispecific antibodies

HX009
CD47 and

PD-1
HX009 II

Metastatic solid
tumors

210 NCT04886271

PF-07257876
CD47 and

PD-L1
PF-07257876 I

Non small-cell
lung cancer, head

and neck
squamous cell

carcinoma,
ovarian cancer

90 NCT04881045

CPO107
(JMP601)

CD47 and
CD20

CPO107 (JMP601) I
Non-Hodgkin’s

lymphoma (CD-20
positive)

75 NCT04853329

IBI322
CD47 and

PD-L1

IBI322 I
Hematologic
malignancies

182 NCT04795128

IBI322 Ia
Metastatic solid

tumors
45 NCT04338659

IBI322 Ia/Ib
Metastatic solid

tumors
218 NCT04328831

SL-172154
SIRPα and

CD40L

SL-172154
(intravenous)

I Ovarian cancer 40 NCT04406623

SL-172154
(intratumoral)

I

Head and neck or
cutaneous

squamous cell
carcinoma

18 NCT04502888

TG-1801
CD47 and

CD19
TG-1801 +/−
ubitixumab

Ib
Hematologic
malignancies

60 NCT04806035

IMM0306 CD47 and
CD20

IMM0306 I Refractory or
Relapsed CD20-

positive B cell

131 NCT04746131
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Major concerns regarding the use of CD47-targeted agents are driven by the ubiquitous expression of CD47, which

leads to rapid drug elimination, “antigen sink” and hematologic toxicity, such as anemia and thrombocytopenia .

The impact on hematopoietic cells, particularly red blood cells, presents a substantial issue with CD47/SIRPα

targeted drugs. Given that older red blood cells are more sensitive to phagocytosis, red blood cell destruction

remains a limiting toxicity with these drugs, and may influence the age of patients that can be treated with these

agents . Notably, as opposed to red blood cells, other normal functioning cells are less vulnerable to

macrophage-mediated immune destruction with anti-CD47 therapies, as further activation of prophagocytic signals

and involvement of calreticulin are suggested to be necessary steps to generate immune-related adverse events

. Furthermore, the use of CD47 or SIPRα-directed antibodies structured with an intact Fc portion raises

similar concerns, due to the widespread expression of Fc receptors on normal cells, and the risks for potentially

causing immune destruction of “self” cells . From the drug development standpoint, the efficacy of the

CD47/SIRPα blockade can vary based upon drug delivery method and compartmentalization of the drug. In

addition, tumor type and stage, tumor immune microenvironment and acquired drug resistance, constitute other

potential determinants of the efficacy of CD47/SIRPα inhibitors .

4. Anti-CD47 Antibodies and CD47-Targeting Recombinant
Proteins

CD47-directed monoclonal antibodies and fusion proteins with SIRPα immunoglobulin structure competitively bind

CD47 and block the interaction between CD47 and SIRPα. This class of therapeutics constitute the majority of the

available in-human data testing CD47/SIRPα inhibition in solid tumors and hematologic malignancies, although

data remains limited.

Hu5F9-G4 (5F9, magrolimab) is a humanized antibody with an IgG4 Fc fragment . In a preclinical setting,

magrolimab demonstrated anti-tumor activity against AML in-vitro and in vivo. Furthermore, complete disease

elimination was observed in human B lymphoblastoid cell-engrafted mice, after treatment with magrolimab in

combination with rituximab . Preclinical models testing magrolimab in solid tumors such as colon, liver, ovarian

and breast cancers demonstrated promising anti-tumor activity . Another study in which patient-derived NHL

xenografted mice were treated with magrolimab/rituximab combination showed an 89% cure rate, defined as over 4

months of disease free survival following the discontinuation of therapy . In-depth analyses suggested that

rituximab plays a complementary role in further stimulation of innate immunity, via its active Fc effector function-

inducing natural killer cell and macrophage-mediated cellular cytotoxicity. Accordingly, the data from a phase Ib

study of 22 patients with relapsed or refractory NHL, 95% of whom were previously treated with rituximab,

demonstrated encouraging outcomes with an objective response rate of 50%, and a complete response rate of

Agent Therapeutic
Target Design Phase Disease Site Accrual

Goal Identifier

Non-Hodgkin’s
Lymphoma

Fusion proteins

TTI-622

CD47 via
SIRPαFc

(IgG4)
structure

TTI-622 + rituximab,
PD-1 inhibitor,

Proteasome inhibitor
regimen or rituximab

Ia/Ib
Lymphoma or

myeloma
156 NCT03530683

ALX148

CD47 via
SIRPαFc

(IgG1)
structure

ALX148 +
azacitidine

I/II
Myelodysplastic

syndrome
173 NCT04417517

ALX148 +
venetoclax or

azacitidine
I/II

Acute myleoid
leukemia

97 NCT04755244

ALX148 II
Head and neck
squamous cell

carcinoma
112 NCT04675333

ALX148 +
pembrolizumab

II
Head and neck
squamous cell

carcinoma
111 NCT04675294
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36%, with magrolimab and rituximab in combination . Adverse events experienced by patients on trial included

chills, anemia and headaches (41% each), all of which occurred only in the first weeks of the trial. There were no

significant safety signals in the latter stages of the trial. A simultaneously conducted phase I study of single agent

magrolimab in metastatic solid tumors demonstrated a similar safety profile, with transient treatment-related

adverse events . Of note, trends in anemia development and transfusion requirements with magrolimab were

further examined using the data from the patient population in the phase I dose escalation part of these studies .

Patients on escalating doses of magrolimab experienced a median 1.0 g/dL decrease in hemoglobin levels, and

subsequent doses were associated with a lesser degree of hemoglobin decline. Red blood cell transfusion yielded

appropriate responses in hemoglobin concentration, supporting the evidence regarding the transient nature of

anemia after magrolimab administration . A number of clinical trials evaluating magrolimab, either as a single

agent or in combination with cytotoxic therapies, targeted therapies or immune checkpoint inhibitors to treat

hematologic neoplasms, are ongoing.

Other CD-47-targeting monoclonal antibodies that have entered clinical development include IBI188 (letaplimab),

AK117 and SRF231. A phase I study of letaplimab in patients with advanced solid tumors and lymphomas was

recently completed. Letaplimab demonstrated a favorable toxicity profile, with no dose-limiting toxicities. The

majority of the treatment-related adverse events were grade 1–2. The rate of anemia was 15%, and only one

patient developed grade 3 anemia. Notably, infusion related reactions were seen in 65% of the patient population,

but all were grade 1–2 and manageable with a standard infusion-related reaction treatment algorithm . AK117

monotherapy in patients with metastatic solid tumors demonstrated safety with no dose-limiting toxicities, no

infusion-related reactions, or grade ≥ 3 treatment-related adverse events observed with up to 20 mg/kg dosing.

Further dose escalation is underway with 30 mg/kg dosing . For SRF231, further exploration in clinical trials was

held by the pharmaceutical company.
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